Benchmarking Permutation Flow Shop Problem: Adaptive and Enumerative Approaches Implementations via Novel Threading Techniques

Hari Prasad Sapkota
harrysapkota@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations
Part of the Computer Sciences Commons

Repository Citation

Sapkota, Hari Prasad, "Benchmarking Permutation Flow Shop Problem: Adaptive and Enumerative Approaches Implementations via Novel Threading Techniques" (2019). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3668.
https://digitalscholarship.unlv.edu/thesesdissertations/3668

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

BENCHMARKING PERMUTATION FLOW SHOP PROBLEM: ADAPTIVE AND ENUMERATIVE APPROACHES IMPLEMENTATIONS VIA NOVEL THREADING TECHNIQUES

 ByHari Prasad Sapkota
Bachelor of Computer Engineering Tribhuvan University 2012

A thesis submitted in partial fulfillment of the requirements for the

Master of Science in Computer Science

Department of Computer Science
Howard R. Hughes College of Engineering
The Graduate College

University of Nevada, Las Vegas
May 2019
(C) Hari Prasad Sapkota, 2019

All Rights Reserved

Thesis Approval

The Graduate College
The University of Nevada, Las Vegas
April 11, 2019

This thesis prepared by

Hari Prasad Sapkota
entitled

Benchmarking Permutation Flow Shop Problem: Adaptive and Enumerative Approaches Implementations via Novel Threading Techniques
is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
 Department of Computer Science

Wolfgang Bein, Ph.D.
Examination Committee Chair

Kathryn Hausbeck Korgan, Ph.D.
Graduate College Dean

Ajoy Datta, Ph.D.
Examination Committee Member
Laxmi Gewali, Ph.D.
Examination Committee Member
Henry Selvaraj, Ph.D.
Graduate College Faculty Representative

Abstract

A large number of real-world planning problems are combinatorial optimization problems which are easy to state and have a finite but usually very large number of feasible solutions. The minimum spanning tree problem and the shortest path problem are some which are solvable through polynomial algorithms. Even though there are other problems such as crew scheduling, vehicle routing, production planning, and hotel room operations which have no properties such as to solve the problem with polynomial algorithms. All these problems are NP-hard. The permutation flow shop problem is also NP-hard problem and they require high computation. These problems are solvable as in the form of the optimal and near-optimal solution. Some approach to get optimal are exhaustive search and branch and bound whereas near optimal are achieved annealing, Genetic algorithm, and other various methods.

We here have used different approach exhaustive search, branch and bound and genetic algorithm. We optimize these algorithms to get performance in time as well as get the result closer to optimal. The exhaustive search and branch and bound gives all possible optimal solutions. We here have shown the comparative result of optimal calculation for 10 jobs with varying machine number up to 20 . The genetic algorithm scales up and gives results to the instances with a larger number of jobs and machines.

Acknowledgements

"I would like to wholeheartedly thank my thesis advisor and chair, Dr. Wolfgang Bein, without whose invaluable constructive criticism, suggestive guidelines, support and encouragement, this thesis would not be in the form it is today.

I am grateful to Dr. Ajoy Datta, Dr. Laxmi Gewali and Dr. Henry Selvaraj for accepting to be on the committee and their tremendous support, invaluable feedback and encouragement.

I would like to express my sincere gratitude to Computer Science department at Howard R. Hughes College of Engineering, University of Nevada, Las Vegas for providing me with the learning opportunity as well as graduate assistantship.

I am thankful to my graduate assistantship instructor Dr. Edward Jorgensen for being helpful throughout my study and for valuable suggestions.

I am also grateful to all my professors for their suggestions and inspirational lectures which were beneficial for my thesis.

Finally, my thanks go to my family and all my friends who have offered their insightful suggestions and comments."

Hari Prasad Sapkota
University of Nevada, Las Vegas
May 2019

This thesis is dedicated to my parents and my wife for their love, endless support and encouragement.

Table of Contents

Abstract iii
Acknowledgements iv
Dedication v
Table of Contents vi
List of Tables ix
List of Figures x
List of Algorithms xi
List of Acronyms xii
Chapter 1 Introduction 1
1.1 Scheduling 3
1.1.1 Job Data 4
1.1.2 Job Characteristics 5
1.1.3 Machine Environment 5
1.1.4 Optimality Criteria 5
1.2 Flow Shop 6
1.2.1 Open Shop Problem 6
1.2.2 Job Shop Problem 6
1.2.3 Mixed Shop Problem 7
1.2.4 Flow Shop Problem 7
1.2.5 Permutation Flow Shop 8
1.2.6 Makespan Calculation 9
Chapter 2 Branch and Bound 10
2.1 History 10
2.2 Overview 11
2.3 Simple B\&B algorithm 11
2.4 Figurative illustration of branch and bound 12
2.5 B\&B algorithm in Permutation Flow Shop Problem 14
2.5.1 Lower bound for root 14
2.5.2 Lower bound for node 15
2.5.3 Node selection and branching 16
2.5.4 The B\&B Algorithm 16
2.5.5 The $\mathrm{B} \& \mathrm{~B}$ algorithm multi-threading 17
Chapter 3 Genetic Algorithm 20
3.1 History 20
3.2 Basic Concept 20
3.2.1 Simple GA Example 21
3.3 GA in Permutation Flow Shop Problem 22
3.3.1 Initial Population 23
3.3.2 Selection 24
3.3.3 Crossover 24
3.3.4 Mutation 25
3.4 Population Generation 26
3.5 GA multi-threading 26
Chapter 4 Results 29
4.1 Exhaustive Search Results 31
4.2 Branch and Bound Algorithm Results 33
4.3 Genetic Algorithm Results 37
4.4 Problems Faced 44
Chapter 5 Conclusion and Future Work 45
5.1 Conclusion 45
5.2 Future Work 46
Appendix A Selected Source Code 47
Bibliography 50
Curriculum Vitae 54

List of Tables

1.1 Flow Shop Problem Example Input 8
1.2 Permutation Flow Shop Problem Example Input 8
3.1 A Simple GA Example - Initial Data 22
3.2 A Simple GA Example - Result Data 22
4.1 Exhaustive search result single and multi threads with optimal results count. 32
4.2 Execution time and node visited results for single and multi-threaded comparison with speedup 35
4.3 BB results comparison with Takano and Nagano [TN17] 37
4.4 Genetic algorithm summary results 1 38
4.5 Genetic algorithm summary results 2 39
4.6 Genetic algorithm summary results 3 40

List of Figures

1.1 Machine oriented Gantt Chart 4
1.2 Job oriented Gantt Chart 4
1.3 Gantt chart for the flow shop example 8
1.4 Gantt chart for the permutation flow shop example 9
2.1 Illustrative of Branch and Bound 13
2.2 Lower bound for root calculation illustration figurative 15
2.3 Lower bound for node calculation illustration figurative 16
2.4 Multi-Thread B\&B Approach illustration 19
3.1 Multi-Thread GA Approach illustration 28
4.1 Machine Configuration 30
4.2 Machine based Threaded and Non-Threaded comparison with speedup 33
4.3 Execution Time comparison for Single and Multi-Threaded 36
4.4 Nodes Visited comparison for Single and Multi-Threaded 36
4.5 Averaged execution time comparison summarized over number of jobs 41
4.6 Averaged AR comparison summarized over number of jobs 42
4.7 Exact optimal count comparison summarized over number of jobs 42
4.8 Averaged execution time comparison summarized over number of machines 43
4.9 Averaged AR comparison summarized over number of machines 43
4.10 Exact optimal count comparison summarized over number of machines 44

List of Algorithms

1 Cmax Calculation Algorithm 9
2 Hybrid BeFS algorithm for node selection 17
3 Branch and Bound algorithm 18
4 GA Next Job Order Generator Algorithm 23
5 Initial GA Population Generation 23
6 Higher Probable Job Order Index Finder Algorithm 24
7 Crossover Algorithm 25
8 Mutation Algorithm 26
9 New GA Population Generation 27

List of Acronyms

Cmax : Makespan
MPM : Multi Purpose Machine
NIQ : No Intermediate Queues
SDST : Sequence-Dependent Set-up Times
SMT : Surface Mount Technology
PCB : Printed Circuit Board
MILP : Mixed Integer Linear Program
Ex : Exhaustive Search
BB : Branch and Bound
GA : Genetic Algorithm
BFS : Breadth First Search
DFS : Depth First Search
BeFS : Best First Search
LB : Lower Bound
UB : Upper Bound
AR : Approximation Ratio

Chapter 1

Introduction

The world is developing in various fields with the aid of technologies. The sequencing is one of the common problem occurring frequently. The manufacturing sector, airlines sector, banking sector and various other day to day life activities involve sequencing to great extent ${ }^{[R W C M 03]}$. In economic and industrial field flow shop can be implied to great extent.This has lured many researchers to work on problem with diverse classical assumptions and different objective functions and by implementing various optimization techniques.There are two main elements of flow shop problem: (i) M machines for job processing and (ii) N jobs to be processed on those machines. The jobs and machines have their criteria. All jobs sequence execute in same machine order. The job is not executed multiple times on same machine. A job cannot be executed on multiple machines neither a machine can execute multiple jobs. At first Conway et al. (1967) have devised the notation for flow shop with makespan criterion as $n / m / F / c_{\max }{ }^{[R W C M 03]}$ later Graham et al. (1979) introduce new notation as $F \| c_{\max }{ }^{[R . L 79]}$. The makespan criterion is defined as the total time of completing all the jobs on all machines.This problem has $(n!)^{m}$ alternative sequence of jobs over the machines. The classical flow shop problem is assumed to have a buffer or queue to hold the jobs between the machines (Allahverdi et al. $1999{ }^{[A G A 99]}$). Later different variants were developed.Blocking flow shop problem was stated by Abadi, Hall and Sriskandarajah (1995) [AHSO0]. Aldowaisan and Allahverdi (1998) gave a concept on no-wait flow shop problem ${ }^{[A A 98]}$. The similar concept was earlier pitched by Piehler (1960), Reddi and Ramamoorthy (1972), Bonney and Gundry (1976), King and Spachis (1980), Gangadharan and Rajendran (1993) and Rock (1984) whereas no intermediate queues (NIQ) flow shop problem was mentioned by Stafford (1988), Stafford and Tseng (1990), and Wismer (1972) ${ }^{[505]}$. The survey of Hall and Sriskandarajah (1996) aided to deduce the computational complexity for a varieties of approach to problems describing also the different
application ${ }^{[H S 96]}$. Thus it make no-wait flow shop problem a topic of interest (e.g. Bertolissi $2000{ }^{[B e r 00]}$, Aldowaisan and Allahverdi $2004{ }^{[\text {AAA04] }}$, passim). In the beginning of 2000, hybrid flow shop problems came to eyes of researchers.

The flow shop environment in real life scenario is not as stated in classical flow shop problem where set-up times are assumed to be unaffected by the job's position in sequence. Hence set-up time can be added in processing time of job. In fact the real life flow shop problem has sequencedependent set-up times (SDST). The surface mount technology (SMT) and printed circuit board (PCB) manufacturing environments have SDST flow shop problem. A mixed integer linear program (MILP) model is suggested first by Srikar and Ghosh (1986) for SDST flow shop problem ${ }^{[S G 86]}$. Later, Stafford and Tseng (1990) ${ }^{[J T 90]}$ and Rios-Mercado and Bard (1999) ${ }^{[R M B 99]}$ did further work on the problem. Tseng and Stafford (2001 ${ }^{[\text {TJ01] }}, 2002{ }^{[\text {ST02] })}$ proposed two MILP models. The flow shop problem with SDST and makespan criterion was taken into consideration by Ruiz et al. (2004) ${ }^{[R M A 05]}$. The good performing metaheuristics of a regular flow shop problem as well as advanced genetic algorithms were proposed. The flow shop problem with setup times were divided into four categories by Allahverdi et al. (1999) [AGA99] as sequence independent non-batch set-ups, sequence-dependent non-batch set-ups, sequence independent batch set-ups, and sequencedependent batch set-ups ${ }^{[A G A 99]}$. The researchers put their effort based on these categories to solve the problem in real world. For PCB manufacturing environment Lee and Shaw (2000) have done a great deal of work through the minimizing the objective function concept ${ }^{[L S 00]}$. The travelling salesman problem is used to model the problem F/no-idle/C $\mathrm{C}_{\max }$ by Saadani et al. (2004) [SGM05]. All the previous mentioned are serial flow shop however the concept of a concurrency in flow shop is shown by Lee et al. (1993) [LCL93] and Potts et al. (1995) ${ }^{[P S S}{ }^{+95]}$.

Simultaneously, with the work on flow shop, the special case of the permutation flow shop was also studied by the researchers with great deal of interest since 1960. In the permutation flow shop problem the same job order is followed by all machines and is denoted as $F|p r m u| c_{m a x}{ }^{[R . L 79]}$. Dudek and Teuton (1964) ${ }^{[D T 64]}$ had explained the basic assumptions for this problem in detail. The optimal calculation approaches had been approached earlier by Szwarc (1997) ${ }^{[S z w 71]}$, Lageweg et $a l(1978){ }^{[L L R K 78]}$, Potts (1980) ${ }^{[P o t 80]}$, and Carlier and Reba(1996) ${ }^{[C R 96]}$. The permutation flow shop problem is known to be a NP-hard problem for three or more machines [GJS76]. Hence, heuristics approach had been a way of getting a near-optimal solutions. Yet, there is no perfect framework that had been the best. Many researchers had tried to classify problem and the heuristics for better results ${ }^{[\text {Lou96] }}$. Gupta(1979) ${ }^{[G u p 79]}$, King and Spachis(1980) ${ }^{[\text {KS80] }}$ and Parl et al.(1984) ${ }^{[P P E 84]}$ had
given the review on development of heuristics. All these heuristics happen to have different nature such as computation time, complexity order or memory requirement. Further, Widmer and Hertz (1989) [WH89], Moccellin (1995) ${ }^{[\mathrm{Moc95]}}$ and Nawaz et al.(1983) ${ }^{[\mathrm{NEH} 83]}$ have worked on new better heuristics. There were even earlier attempts to classify the flow shop heuristics as fixed functional heuristics, floating functional heuristics, and synthetic functional heuristics. Framimam et al.(2004) ${ }^{\text {[FGL04] }}$ presented a general framework for the development of the heuristics. There are approaches to handle the uncertainties that may occur during the job execution. Studies had been initiated by Gholami, Zandieh, and Alem-Tabriz(2009) [GZAT09] and Ouelhadj and Petrovic(2009) [OP08] which later grab more researchers towards the area. While the researchers are investing their effort on various nature of permutation flow shop problem, we here took a simple dig on the exhaustive search and branch and bound method for the optimal. The both methods are consuming the multithreading approach with some tweaks in the algorithm. In addition, for near-optimal solution, we took genetic algorithm and converted it into a concurrent approach with some tweaks in the algorithm. These methods requires extensive computation which we are trying to minimize and add the concurrent approach for faster execution. It is also known that the optimal solution though branch and bound techniques are most widely used to examine the performance for most studies involving heuristics ${ }^{[B H 91]}$. Hence, we here have expected these approach will aid in further research in the field of static permutation flow shop problem.

In the first chapter we started with the previous related works followed by short introduction to scheduling and shop problems. Later, flow shop and permutation flow shop problem are explained in detail with example. We concluded first chapter with the algorithm for makespan calculation. In chapter two, we briefly describe branch and bound algorithm along with the related history and explained the implementation of BB algorithm in permutation flow shop problem. At the end, we showed the multi-threaded approach of the BB algorithm. Genetic algorithm and its implementation in detail is described in chapter three. The multi-threaded approach to genetic algorithm for permutation flow shop problem is illustrated at the end of the chapter. The next chapter is the results comparison and analysis followed by chapter with conclusion and future work.

1.1 Scheduling

A schedule is the allocation of intervals for each job to be processed on machines. The jobs can be of n different types and machines can be m. For the illustrative purpose of jobs and its relation to machines Gantt charts are good. There are two ways that are used in representing the Gantt號
chart, first, machine-oriented and next is job-oriented.

Figure 1.1: Machine oriented Gantt Chart

J_{1}	M_{1}	M_{2}					
J_{2}	M_{2}	M					
J_{3}	M ${ }^{\text {a }}$	M_{1}					
J_{4}							

Figure 1.2: Job oriented Gantt Chart

As seen in the figure above, machine-oriented has machines fixed and jobs are places as per intervals. Similarly, job oriented has jobs fixed and machines are places as per intervals.

1.1.1 Job Data

We follow Peter Brucker ${ }^{[\text {Bru07] }}$ notation stating for scheduling problems. J_{i} is a job consisting of operations $O_{i 1}, O_{i 2}, \ldots, O_{i n_{i}}$ where n_{i} is number of operations for the job. For each operation $O_{i j}$, there is certain processing time $p_{i j}$. Assume J_{i} has $\mathrm{n}_{\mathrm{i}}=1$, its operation is now $O_{i 1}$ only then processing time is denoted by $p_{i} . r_{i}$ is a release date, on which the first operation of J_{i} becomes available for processing may be specified. Associated with each operation $O_{i j}$ is a set of machines $\mu_{i j} \subseteq\left\{M_{1}, \ldots, M_{m}\right\} . O_{i j}$ may be processed on any of the machines in $\mu_{i j}$. Usually, all μ_{ij} are one element sets or all $\mu_{i j}$ are equal to the set of all machines. Machine-oriented has dedicated machines while job oriented has machines as parallel. Multi-purpose machines (MPM) are adjusted such that they can process operation. These MPM are used in real-world problems like flexible manufacturing has various steps of operations performed by machines with different tools. While processing $O_{i j}$ may use all machines in the set $\mu_{i j}$, scheduling problems as such are called multiprocessor task scheduling problems. A cost function $f_{i}(t)$ is defined by a due date d_{i} and a weight w_{i} measures the cost of completing J_{i} at time t. The symbols $p_{i}, p_{i j}, r_{i}, d_{i}$ and w_{i} are all assumed to be integers. The scheduling problems are classified based on a three-fields $\alpha|\beta| \gamma$ classification where α specifies the machine environment, β specifies the job characteristics and γ denotes the optimality criterion. This classification scheme was introduced by Grahm et al. [R.L79].

1.1.2 Job Characteristics

There are at most six parameters to define the job characteristics usually β is used as $\beta_{1}, \beta_{2}, \beta_{3}$, β_{4}, β_{5}, and β_{6}. Preemption is indicated by β_{1} as $\beta_{1}=p m t n$ if allowed else β_{1} is not present in β. Precedence relations is described through β_{2}. The values for β_{2} varies as prec, intree (outtree), tree, chains and sp-graph depending on different nature of jobs. If precedence relation is not there β_{2} is not included in β. Release dates specification for a job is handled through $\beta_{3}=r_{i} . \beta_{3}$ is not in β when $r_{i}=0$ for all jobs. Processing time or operations behavior is stated as in β_{4}. Job deadline is specified through β_{5}. Batching nature is represented by β_{6} as the values p-batch or s-batch if present else β_{6} is not included in β.

1.1.3 Machine Environment

Similar to job characteristics, machine environment is addressed through α as α_{1} and α_{2}. The values of α_{1} are $o, P, Q, R, P M P M, Q M P M, G, X, O, J$ and F which has meaning as dedicated machines, identical parallel machines, uniform parallel machines, unrelated parallel machines, multi-purpose machines with identical speed, multi-purpose machines with uniform speed, general shop, mixed shop, open shop, job shop and flow shop respectively. α_{2} represents the number of machines if specified else machines count is arbitrary.

1.1.4 Optimality Criteria

γ is used as optimality criteria definition. C_{i} is denoted as finishing time for job J_{i} and cost is $f_{i}\left(C_{i}\right)$. Bottleneck objectives and sum objectives are types of total cost functions denoted respectively below as equations.

$$
f_{\max }(C)=\max \left\{f_{\mathrm{i}}\left(C_{\mathrm{i}}\right) \mid i=1, \ldots, n\right\}
$$

and

$$
\sum f_{\mathrm{i}}(C)=\sum_{i=1}^{n} f_{\mathrm{i}}\left(C_{\mathrm{i}}\right)
$$

The schedule which minimizes these total cost functions is the aim of scheduling problem. Optimality Criteria γ is set as $\gamma=f_{\text {max }}$ or $\gamma=\sum f_{\mathrm{i}}$ also there are special functions too. The makespan $C_{m a x}$, total flow time $\sum C_{\mathrm{i}}$ and weighted flow time $\sum w_{\mathrm{i}} C_{\mathrm{i}}$ are some common objective functions. In addition, objective functions with due date d_{i} associated jobs J_{i} have various definition as:
lateness $L_{\mathrm{i}}=C_{\mathrm{i}}-d_{\mathrm{i}}$
earliness $E_{\mathrm{i}}=\max \left\{0, d_{\mathrm{i}}-C_{\mathrm{i}}\right\}$
tardiness $T_{\mathrm{i}}=\max \left\{0, C_{\mathrm{i}}-d_{\mathrm{i}}\right\}$
absolute deviation $D_{\mathrm{i}}=\left|C_{\mathrm{i}}-d_{\mathrm{i}}\right|$
squared deviation $S_{\mathrm{i}}=\left(C_{\mathrm{i}}-d_{\mathrm{i}}\right)^{2}$
unit penalty $U_{\mathrm{i}}= \begin{cases}0 & \text { if } C_{\mathrm{i}} \leq d_{\mathrm{i}} \\ 1 & \text { otherwise }\end{cases}$
A regular objective function is nondecreasing with respect to all variables $C_{i} . E_{i}, D_{i}$ and S_{i} are not regular and others are regular.

1.2 Flow Shop

It has been shown that the three or more machine permutation flow shop problems are NP-complete problems (Gonzalez and Sahni, 1978). Some of other shop scheduling problems are open shop problems, job shop problems, and mixed shop problems. These problems fall in general shop problems category. The general shop problem consists of n number of jobs $J_{1}, J_{2}, \ldots, J_{n}$. Each J_{i} having operations $O_{1}, O_{2}, \ldots, O_{n_{i}}$ and each operations $O_{i j}$ have processing time $p_{i j}$. There are m Machines $M_{1}, M_{2}, \ldots, M_{m}$. Each operations $O_{i j}$ must be processed on a machine $\mu_{i j} \in\left\{M_{1}, M_{2}\right.$, ..., $\left.M_{m}\right\}$. The operations of jobs have a precedence relationship. A machine can process a job at a time and no two machines can process the same job at the same time. Job J_{i} has some objective function of finishing time C_{i} and our objective is to find a feasible schedule that minimizes the finishing times for all jobs $J_{1}, J_{2}, \ldots, J_{n}$. The assumption is that the objective function is regular.

1.2.1 Open Shop Problem

An open shop problem is defined such that there is no precedence relationship between operations and each job have exactly m operations where operation $\mathbf{O}_{\mathbf{i j}}$ has to be processed in machine $\mathbf{M}_{\mathbf{j}}$.

1.2.2 Job Shop Problem

A generalized version of the flow shop problem is job shop problem. There are n jobs and m machines. Operations vary based on the job number yet it preserves the order. Each operation with their processing time is needed to be processed in a particular machine. Considering the
finishing time of the last operation, the solution is to find the best possible schedule which has a minimum value for the objective function.

1.2.3 Mixed Shop Problem

The mixed shop problem comprises the open shop problem and the job shop problem thus has open shop and job shop jobs. There are bound of a job on number count as n_{O} for open shop and n_{J} for job shop.

1.2.4 Flow Shop Problem

There are Jobs such as $J_{1}, J_{2}, \ldots, J_{n}$ and Machines such as $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \ldots, \mathrm{M}_{\mathrm{m}}$. These Jobs has different operations such as $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \ldots, \mathrm{O}_{\mathrm{m}}$ to be ran on m different machines each. For particular Job say J_{i} running particular operation O_{j} on machine M_{j} it takes processing time as p_{ij} units.

There is a relationship between the job 's operations and machines. The job J_{i} 's any operations O_{j} can only begin on machine M_{j} when operations $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \ldots, \mathrm{O}_{\mathrm{j}-1}$ for the job J_{i} are completed from machines $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \ldots, \mathrm{M}_{\mathrm{j}-1}$. Alternatively, no two operations for the same jobs are processed at the same time and all preceding operations have to be completed before beginning a new one. A machine can take only a job at one time. The job order may differ considering the operations performed on the particular machine. As being flow shop, the operations order hence machine order are followed by each job as M_{1} then M_{2} then M_{3} till M_{m}. Overall the aim of this problem is to reduce the makespan such that the completion times for all the jobs on all the machines is minimum. Hence the flow shop problem requires the effective job order for each machine.Computing for n jobs and m machines flow shop problem has ($\mathrm{n}!)^{\mathrm{m}}$ different solutions in order to get the optimal one. This is highly unlikely a feasible way to get optimal results. Therefore there are other approaches as permutation flow shop where problem size reduces to n !.

Example of Flow Shop Problem

The example shows three jobs and three machines problem with a solution.

The makespan for the example is found to be 20 .

Jobs	Machines	M1	M2	M3
J1	2	1	2	
J2	1	3	4	
J3	5	1	2	

Table 1.1: Flow Shop Problem Example Input

Figure 1.3: Gantt chart for the flow shop example

1.2.5 Permutation Flow Shop

The huge size of the solution of the flow shop problem is somewhat reduced using permutation flow shop. Here instead of considering different job orders for each machine, just only one job order is chosen for all the machines. The problem size hence turned to n !.

Example of Permutation Flow Shop Problem

The example shows three jobs and three machines problem with a solution for job order $\mathrm{J}_{1}, \mathrm{~J}_{2}$ and J_{3}.

Jobs	Machines	M1	M2
M3			
J1	3	1	2
J2	1	3	6
J3	5	3	2

Table 1.2: Permutation Flow Shop Problem Example Input

The makespan for the problem is found as 15 .

Figure 1.4: Gantt chart for the permutation flow shop example

1.2.6 Makespan Calculation

The job and machine along with their values are represented as matrix M. I have assumed machines as rows and jobs are columns in matrix M.The total number of machines are as totalMachine and the total number of jobs are as totalJob. The order or sequence of a job to be computed through the machines is represented as an array \mathbf{O}. The makespan calculated value is here represented as Cmax which is an integer value.

The algorithm 1 below shows steps for calculation of makespan.

```
Algorithm 1 Cmax Calculation Algorithm
    Input: (i) Job Machine Matrix M, (ii) Job Order \(O\)
    Output: Cmax Value
    Initialize variables
    Allocate space for cumulative job completion calculation matrix \(\mathbf{J}\)
    for each machine \(r\) in \(\mathbf{M}\) do
        Allocate memory for the machine \(r\) and assign to matrix \(\mathbf{J}\)
        if \(\mathrm{r}=0\) then
            for each job \(c\) in \(\mathbf{M}\) do
                if \(c \neq 0\) then
                        \(\mathbf{J}[r][c]=\mathbf{J}[r][c-1]+\mathbf{M}[r][\mathbf{O}[c]]\)
            else
                        \(\mathbf{J}[r][c]=\mathbf{M}[r][\mathbf{O}[c]]\)
        else
            for each job \(c\) in \(\mathbf{M}\) do
                if \(c=0\) then
                        \(\mathbf{J}[r][c]=\mathbf{J}[r-1][c]+\mathbf{M}[r][\mathbf{O}[c]]\)
                    else
                        \(\mathbf{J}[r][c]=(\mathbf{J}[r-1][c]>\mathbf{J}[r][c-1]) ? \mathbf{J}[r-1][c] \mathbf{J}[r][c-1]+\mathbf{M}[r][\mathbf{O}[c]]\)
    Cmax \(\leftarrow \mathbf{J}[\) totalMachine - 1][totalJob - 1]
    Release Memory from matrix \(\mathbf{J}\)
```


Chapter 2

Branch and Bound

2.1 History

Branch and Bound $(B \& B)$ is by far the most widely used tool for solving large scale NP-hard combinatorial optimization problems. B\&B is, however, an algorithm paradigm, which has to be filled out for each specific problem type, and numerous choices for each of the components exist. Even then, principles for the design of efficient B\&B algorithms have emerged over the years.

The branch and bound methods in flow shop scheduling have been widely used for finding optimal or near optimal solution methods. Ignall and Schrage (1965) [IS65] Lomnicki (1965) [Lom65], McMahon and Burton (1967) ${ }^{[\text {MB67] }}$, Ashour (1970) ${ }^{[\text {Ash70] }}$, Gupta (1971) ${ }^{[G u p 71]}$, Lageweg et al. (1978) ${ }^{[L L K 78]}$, and Bansal (1979) ${ }^{[B a n 79]}$ among others have developed different branch and bound methods for various measures of performance like makespan, mean flow time, mean tardiness and maximum tardiness. The difference and the efficiencies of a branch and bound algorithms are in the choice of the lower bound (LB) and elimination rules. The strong bounds and elimination rules eliminate relatively more nodes of the search tree which very often brings in more computation requirements as well. If such needs are excessively large, it may become advantageous to search through larger nodes using a weaker, but fast computable LB. However, the advantages of stronger bounds and elimination rules are more substantial in large scale problems (Baker, 1975) [Bak75]. In 1973 Salvador ${ }^{[S a 173]}$ suggested the permutation flow shop problem's solution through Branch and bound. Kochhar and Morris (1987) ${ }^{[K M 87]}$ report work on the development of the heuristics. The heuristics developed try to minimize the effect of setup times and blocking. Further work has been reported by Brah and Hunsucker in the development of mathematical formulation, primarily useful for small size problems ${ }^{[B H 91]}$.

2.2 Overview

The concept of the branch and bound provides a strong basis for constructing the algorithms to solve NP-hard discrete optimization problems. Starting with the whole solutions the B\&B algorithm searches for the best solution. However, the exponential number of solutions restricts explicit enumeration. In order to make solution space feasible for getting best solution bounds play a vital role. The bounds let search focus on only those space where there is a possibility of having the best solution.

The search begins with a pool containing all the possible solutions which are marked to be unexplored. The unexplored such subset is represented as nodes. For such node, B\&B algorithm processes a node at a time. The operations of B\&B algorithm consists of selection of a node, calculation of bound and branching. The order of these steps depends on the strategy of choosing the next node for processing. If the bound value of the subproblem is considered for selection as next subproblem, then branching is done after choosing the node. The branching means dividing the current node space into two or more subspaces base on certain criteria. The branching is done till the subspace has a single solution left which is compared to the current best solution and decision is made to keep or discard based on the result of the comparison. Otherwise, the bounding function for the subspace is calculated and compared to the current best solution. If the comparison results show the subspace cannot have an optimal solution it is pruned or discarded else it is kept for further iterations. Since the bounds are calculated first this is called eager strategy. Another way is calculating the bound of the selected node and then branch on the node if necessary. The nodes created are then stored together with the bound of the processed node. This strategy is called lazy strategy. This is good for the depth-first approach in the search tree. Ultimately, the search space is such reduced to have a solution and all live subspaces explored then the current best solution is the required solution.

2.3 Simple $B \& B$ algorithm

The simplest B\&B algorithm concept as an eager strategy is enumerated below:

1. Consider the whole unexplored solution which is a live node \mathbf{S} in live.
2. Repeat until there is no node in live
(a) Get a node \mathbf{P} from live
(b) Generate branches from \mathbf{P}
(c) for each branch of \mathbf{P}
i. Get bound value \mathbf{X} for each branch of \mathbf{P},
ii. If branch has only one solution then compare the current best value and update if better.
iii. If branch has solutions pool then compare the lower bound X obtained to global if better keep the branch in live else discard.
3. After completion the global results are required solution.

2.4 Figurative illustration of branch and bound

Let us understand the $\mathrm{B} \& \mathrm{~B}$ concept through the figure. Figure 2.1 has images shown having problem representation in form of eclipse area and tree. The figure 2.1a shows the initial state of any problem, on the left as eclipse whereas to the right is the root node. Based on certain properties the area is divided into smaller regions which also can be illustrated as in the form of a tree as shown in figure 2.1b. Meanwhile, there occurs bounding or pruning or fathoming which restricts the need to explore a certain portion of the solutions. Thus all the solutions falling to the region are not needed to be computed. In the figure 2.1c below, it is assumed S1 and S3 are pruned as their LB is no better than the current best solution where S2 and S4 are further iterated to get more deeper into the tree and hence towards the optimal. Let us assume, that S21, S22, S41 and S42 each have a solution only. Each solution is compared to the global value. If the LB of of the solution is better then new global value are set else it is discarded. Finally, the global value is the required optimal for the problem.

Assumed here S1 and S3 will yield no better result
(c)

Figure 2.1: Illustrative of Branch and Bound

2.5 B\&B algorithm in Permutation Flow Shop Problem

The B\&B requires the solutions to be searched for arranged in the form of a tree. The tree consists of nodes. In my case the nodes consist of node level, lower bound for the node, partial job order till that node, remaining job order, children count, children pointer, parent pointer, is fathomed and other navigation necessary properties. The strategy followed in my case is eager. The initial upper bound (UB) is obtained by iterating the random job order and computing makespan for the job order to a fixed number of times with a minimum makespan preserved from the iteration. We prune the node during traversal earlier by comparing UB to LB. This helps in the reduction of many branches and hence nodes search. The traversal in a node is the hybrid best first search (BeFS). The breadth-first search (BFS) is not suitable as it requires huge memory also depth-first search (DFS) may take a longer time to get an optimal solution.

2.5.1 Lower bound for root

Initially, the LB computation based on each machine $\left(\mathrm{LB}_{\mathrm{m}}\right)$ is achieved by computing the complete job processing on the machine. Here, for the base machine, it is assumed all the jobs are aggregated and in addition the minimum of a job completion on all machines before the base machine is done and similarly the minimum of a job completion on all machine after the base machine is added. The lower bound of the root ($\mathrm{LB}_{\text {root }}$) is assigned by selecting the maximum value obtained from the lower bound computed on each machine base. The maximum value is selected because it is only the possible value. The mathematical representation is as:

$$
\begin{gather*}
L B_{\mathrm{m}}=\min _{i(0 \ldots N-1)}\left(\sum_{j=0}^{j=m-1} p_{\mathrm{ij}}\right)+\sum_{i=0}^{i=N-1} p_{\mathrm{im}}+\min _{i(0 \ldots N-1)}\left(\sum_{j=m+1}^{j=M-1} p_{\mathrm{ij}}\right) \tag{2.1}\\
L B_{\mathrm{root}}=\max _{m(0 \ldots M-1)}\left(L B_{\mathrm{m}}\right) \tag{2.2}
\end{gather*}
$$

In equation 2.1, m is the machine for which LB is to be calculated, i is any job, j is any machine, N is total jobs, M is total machines and $p_{i j}$ is processing time for any job i for any machine j. It can be illustrated in the figure as below:

Figure 2.2: Lower bound for root calculation illustration figurative

2.5.2 Lower bound for node

Similar to LB for the root, lower bound for the node $\left(\mathrm{LB}_{\mathrm{m}}\right)$ also has three parts. The calculation is similar based on the machine. First part is partial Cmax based on partial order by considering only the machines up-to machine m. The second part is the summation of the processing time of jobs which are not in the partial order. The third part is the same as in case of LB for root. Taking only jobs that are not in partial order and machines that are after machine m in machine order, the minimum sum of any single job is the third portion. Lower bound for the node ($\mathrm{LB}_{\text {node }}$) is chosen from LB_{m} whichever is largest. The mathematical representation is:

$$
\begin{gather*}
L B_{\mathrm{m}}=C m a x_{\mathrm{rm}}+\sum_{i \notin R} p_{\mathrm{im}}+\min _{i \notin R}\left(\sum_{j=m+1}^{j=M-1} p_{\mathrm{ij}}\right) \tag{2.3}\\
L B_{\mathrm{node}}=\max _{m(0 \ldots M-1)}\left(L B_{\mathrm{m}}\right) \tag{2.4}
\end{gather*}
$$

In equation 2.3, R is partial job order, r is last job of partial job order R and Cmax $_{\mathrm{rm}}$ is makespan value for order R and machines $(0, \ldots, \mathrm{~m})$. Figurative explanation is shown below.

Figure 2.3: Lower bound for node calculation illustration figurative

2.5.3 Node selection and branching

As stated earlier, the selection is the hybrid BeFS. BeFS is beneficial as it consumes less memory than BFS and also reaches optimal faster than DFS. We have fused BeFS with DFS. The fusion with DFS enabled in less consumption of memory. The node with LB is selected and branched as the eager strategy. On each iteration, the search goes deeper into the tree until it reaches the leaf. Then, it tries to complete search on all sister nodes before searching back on the parent level. As search return back to parent it then release the memory occupied by the children. The branching is always done to nodes which have better values than the current UB. The branching is not done further than N-1 level because the child after the node is just one. Instead, the LB of its child is calculated and placed earlier. The selection algorithm is as:

In algorithm 2, the first while loop makes sure there are children node to be selected. On line 13, the child fathomed helps in reduction of the tree earlier and adds in finding optimal earlier. Similarly, memory release on line 16 adds more efficiency of the algorithm.

2.5.4 The B\&B Algorithm

The B\&B Algorithm is composed using equation 2.2, equation 2.4 and algorithm 2.
The root and the first children are created separately then algorithm 3 further is used. The method GetPartialJoborders (A) generates the partial job order and remaining job order for the

```
Algorithm 2 Hybrid BeFS algorithm for node selection
    Input: Current Node \(C\)
    Output: Next Node \(C^{\prime}\)
    Declare variable tempNext \(C^{\prime}\)
    if \(C\) is leaf node then
        C.isfathomed \(=\) true
        \(C \leftarrow C\).parent
    while C.allchildfathomed \(=\) true do
        \(C \leftarrow C\).parent till root.
    while true do
        for child \(c\) in C.children do
                if \(c\).isfathomed \(=\) false then
                        if c.lowerbound \(<G L O B A L\).upperbound then
                        \(C^{\prime} \leftarrow c\) and break for loop
                    else
                            c.isfathomed \(=\) true
        if C.allchildfathomed \(=\) true then
                C.isfathomed \(=\) true
                Release memory occupied by all the children
                if C.parent \(=\) NULL then \(\quad \triangleright\) all nodes traversal completed.
                    Return NULL
                else
                    \(C \leftarrow C\).parent
    for child \(c\) in \(C^{\prime}\).parent.children do
        if c.lowerbound \(<C^{\prime}\).lowerbound and \(c\). isfathomed \(=\) false then
                \(C^{\prime} \leftarrow c\)
    Return \(C^{\prime}\)
```

child using the parent node. Based on the equation 2.4, GetLBforTheNode (A) method provide the LB for intermediate nodes. As stated earlier, on line 17 we have calculated the LB earlier in the parent node and reduced the further iteration shortening the tree. Also, the child is fathomed based on the calculated LB as they produce no better result further through the children. Eventually, reaching the last node of the tree, the result is saved if better else fathomed.

2.5.5 The B\&B algorithm multi-threading

The single threaded approach takes more time. In order to improve the performance and reach the optimal solutions fast, we have implemented simple threading. The root's children are enqueued to a queue from where each thread picks a child and applies algorithm 3. The threading approach is shown below in the flow chart:

```
Algorithm 3 Branch and Bound algorithm
    Declare variables myNode, child, children and childcount
    while !nodeSearchComplete do
        myNode \(\leftarrow\) GetMimimumChildNode()
        if myNode \(=\) NULL then
            nodeSearchComplete \(\leftarrow\) true
            Break while loop
        childcount \(\leftarrow\) totalJobs - myNode.level
        if childcount \(>1\) then \(\triangleright\) Create children for myNode
            Allocate memory for myNode.children
            for \(i \leftarrow(0, \ldots\), childcount-1) do
                child.level \(\leftarrow\) myNode.level +1
                child.parent \(\leftarrow\) myNode
                child.fathomed \(\leftarrow\) false
                child.childAllFathomed \(\leftarrow\) false
                    child.childCount \(\leftarrow 0\)
                GetPartialJoborders(child.partialOrder,child.remainingOrder,myNode,i)
                if childcount \(=2\) then
                    child.partialOrder[totalJobs-1] \(\leftarrow\) child.remaingingOrder[0]
                    child.lowerbound \(\leftarrow\) getCmax(child.partialOrder) \(\quad\) refer algorithm 1
                else \(\quad \triangleright\) refer equation 2.4
                    child.lowerbound \(\leftarrow\) GetLBforTheNode(child.partialOrder,child.remainingOrder,child.level)
                if child.lowerbound \(>\) GLOBAL.upperbound then
                    child.fathomed \(\leftarrow\) true
                    child.childAllFathomed \(\leftarrow\) true
                    myNode.children \([i] \leftarrow\) child
        if childcount \(=1\) then
            if child.lowerbound \(<=\) GLOBAL.upperbound then
                saveResult(myNode.partialOrder,myNode.lowerbound)
            child.fathomed \(\leftarrow\) true
            child.childAllFathomed \(\leftarrow\) true
```


Figure 2.4: Multi-Thread B\&B Approach illustration

Chapter 3

Genetic Algorithm

3.1 History

Earlier in the 1950s and the 1960s, independently several computer scientists studied evolutionary systems. They intend to use this idea for solving engineering problems. This started with the idea to evolve a population of candidate solutions to a given problem with the aid of operators mimicking natural selection and genetic variation. On that run, genetic algorithms (GA) were invented by John Holland and later Holland and his students and colleagues at the University of Michigan developed it. Holland, inspired by Darwinian theory, thought to implement similar in computer systems to design algorithms which follows adaptation phenomenon as in nature. A theoretical framework for adaptation under the GA emerge as Holland's book Adaptation in Natural and Artificial Systems was published in 1975. [Mit98]

3.2 Basic Concept

A new population is created going through a method described by GA. The method follows natural selection in creating the new population as well the essence of genetics are imprinted through operators crossover, mutation and inversion. The population consists of chromosomes basically strings of 0 's and 1 's. Each gene is composed of an allele (0 or 1) and such genes join together to form a chromosome. The new population is created as the selection operator chooses the chromosomes that better fits. Sub-parts of two chromosomes are exchanged forming a crossover,mutation occurs randomly altering the allele values of some genes in the chromosome and a contiguous section's order is reversed through inversion all these operations makes a new array of genes in the chromosome. These operators idea is that the newly formed chromosome may provide a better
solution to the problem.

Simple GA Algorithm

Now, let us visualize a simple genetic algorithm concept in the digital world. It is explained as:

1. Initially create a population of size n having chromosomes of length l-bits randomly.
2. Calculate the fitness function $f(x)$ over each chromosome x in the population.
3. Repeat the steps until n offspring have been created
(a) From the current population, select a pair of parent chromosomes. The chromosomes are selected based on the fitness function's value higher or lower as preferred for type of problem. The selection is with replacement meaning same parent can be selected more than once.
(b) Now do crossover based on crossover probability p_{c}. If no crossover occurred then offspring are parent themselves. The point for crossover in chromosome is determined randomly. The crossover can be single point or multi-point. Ultimately, 2 offspring are formed.
(c) With a mutation probability p_{m}, mutate the offspring and put in new population.
4. Make the newly formed population as current population.
5. Based on required generations, go to step 2 and repeat.

Likewise, the biological generation, here a generation is marked as those process of an iteration. Depending upon the need number of generations varies. The entire set of generations forms a run. In overall operation, probabilities and randomness play a vital role hence at the end of the run we get different results.

3.2.1 Simple GA Example

Let's take an illustrative example. Assume chromosome has a string of length $l 7$ bit, fitness function $f(x)$ be the count of 1's in the string, population size n be 4 , crossover probability p_{c} be 0.8 and mutation probability p_{m} be 0.005 .

Consider randomly generated initial population as

Chromosome Name	Chromosome String	Fitness Value
P	0011110	4
Q	1101101	5
R	1010101	4
S	0001000	1

Table 3.1: A Simple GA Example - Initial Data

Simply using "roulette-wheel sampling" as an implementation of fitness-proportionate selection in selection method we get parents. A circular roulette wheel is divided into arc areas based on individual fitness from the current population and each chromosome are assigned accordingly. The wheel is spun as to population size times to get that many parents here 4 times. Let from first 2 spins we get P and Q then on later we get Q and R . With $p_{c}=0.8$, the parents P and Q crossover at the second bit to form $\mathrm{T}=0001101$ and $\mathrm{U}=1111110$. While Q and R didn't crossover so they became offspring. Next step, the mutation occurred on offspring T on the second locus to form $T^{\prime}=0101101$ and R on the fourth locus to form $\mathrm{R}^{\prime}=1011101$. The final result then is:

Chromosome Name	Chromosome String	Fitness Value
T^{\prime}	0101101	4
U	1111110	6
Q	1101101	5
R^{\prime}	1011101	5

Table 3.2: A Simple GA Example - Result Data

Here we got a new better fit $\mathrm{U}(6)$, the average fitness also rose from 14/4 to 20/4. Eventually, with further iterations we will get a string with all ones.

3.3 GA in Permutation Flow Shop Problem

There are few adjustments in simple GA are made in order to advocate the issue of permutation flow shop problem. The chromosomes strings are job numbers exactly one time instead of 0's and 1's. We here represent chromosome string as job order. The crossover is two point and mutation swaps any two jobs in the job order. The crossover probability p_{c} is assumed to be 1 . Based on the fitness function or objective function value from the current population, top certain (say $\delta \%$) job orders are taken directly to the new population. The remaining needed population are obtained through the same steps as in simple GA algorithm assuming $p_{c}=1$.

3.3.1 Initial Population

As the first step, the initial population is generated. A initial job order is set say $J_{1}, J_{2}, \ldots, J_{n}$ and with an advanced random number generator, we get any two position values in the job order to swap and create new job order. This newly created job order is used as the base job order to swap and generate another new job order. This process is repeated until the population size is reached.

Below are related algorithms : The next job order generator plays a vital role in providing randomly distributed candidate solutions.

```
Algorithm 4 GA Next Job Order Generator Algorithm
    Input: Job Order O
    Output: Job Order O
    Initialize the required parameters \(a, b\)
    flag \(\leftarrow\) true
    while flag do
        \(a=\operatorname{mynrand}(0\), totalJobs -1\() \quad \triangleright\) refer appendix A
        \(b=\) mynrand \((0\), totalJobs -1\()\)
        if \(a \neq b\) then flag \(\leftarrow\) false
    \(\operatorname{swap}(\mathbf{O}, a, b) \quad \triangleright\) refer appendix A
    return \(\mathbf{O}\)
```

In the algorithm 4, I have insured the random numbers generated are in the range and are unique. This makes sure that resultant job order \mathbf{O} after swapping is different from that of input.

The random population generation algorithm is as follows:

```
Algorithm 5 Initial GA Population Generation
    Input: (i) Job Machine Matrix M, (ii) Job Order O
    Output: (i) Population \(\mathbf{P}\) (ii) Top \(\delta \%\) job orders \(\mathbf{T}\)
    Initialize the required parameters, \(\mathrm{i}=0, \mathrm{Cmax}, \mathbf{P}, \mathbf{T}\)
    while \(\mathrm{i}<\) population size do
        \(\mathbf{O} \leftarrow \operatorname{getNextJobOrder}(\mathbf{O}) \quad \triangleright\) refer algorithm 4
        Cmax \(\leftarrow\) jobSumulate \((\mathbf{M}, \mathbf{O}) \quad \triangleright\) refer algorithm 1
        Bind Cmax with O
        Insert \(\mathbf{O}\) into \(\mathbf{P}_{\mathbf{i}}\)
        for each element \(t\) in \(\mathbf{T}\) do \(\quad \triangleright\) To get ranked top \(\delta \%\) job orders.
            if \(t . C \max \leq C \max\) then
                    Replace in \(\mathbf{T}\) then terminate loop.
    Return \(\mathbf{P}, \mathbf{T}\)
```

The algorithm 5 uses algorithm 1 and algorithm 4 to yield the initial random population \mathbf{P}.The process of ranking the whole population is expensive in terms of performance to get the top $\delta \%$ job orders. We here avoid a load of ranking by comparing and inserting the better job orders in
a fixed sized array \mathbf{T}. This array \mathbf{T} is transferred to new population directly. The remaining job orders for the new population are obtained through selection, crossover, and mutation.

3.3.2 Selection

The selection is done from the current population \mathbf{P} with replacement. The job orders along with their Cmax values are used to create a range in which higher Cmax occupies more range. The range begins from 0 to sum of $C \max$ from the current population \mathbf{P}. I have designed an algorithm which helps in getting a better job order out of the current population for crossover. The algorithm is as:

```
Algorithm 6 Higher Probable Job Order Index Finder Algorithm
    Input: (i) Cumulative Cmax Array \(\mathbf{P}^{\mathbf{c}}\) (ii) Population Size \(\mathbf{S}\)
    Output: Higher Probable Job Order Index for Current Population Array \(\mathbf{P}\)
    Initialize the required parameters, Cumulative Cmax \(\mathbf{C}^{\mathbf{T}} \leftarrow \mathbf{P}^{\mathbf{c}}[\mathrm{S}]\)
    index \(\leftarrow \mathbf{S}\)
    random \(\leftarrow \operatorname{mynrand}\left(1, \mathbf{C}^{\mathbf{T}}\right) \quad \triangleright\) refer appendix A
    for \(i=\mathbf{S}-1\) till \(i=0\) do
        if random \(\leq \mathbf{P}^{\mathbf{c}}[i]\) then
            inde \(x \leftarrow\) index -1
    Return index
```

The Cumulative Cmax Array $\mathbf{P}^{\mathbf{c}}$ is created at the time of population generation so as to accommodate the selection process later. The index obtained from this algorithm 6 is then used as index in the current population \mathbf{P} to get a parent for crossover. In addition, to make sure the two job order obtained are different, we have added following snippet before each index is fed for crossover.

$$
\begin{aligned}
& a=\text { higherProbJob }\left(\mathbf{P}^{\mathbf{c}}, \mathbf{S}\right) \\
& b=\text { higherProbJob }\left(\mathbf{P}^{\mathbf{c}}, \mathbf{S}\right) \\
& \text { while } a=b \text { do } \\
& \quad b=\text { higherProbJob }\left(\mathbf{P}^{\mathbf{c}}, \mathbf{S}\right)
\end{aligned}
$$

$$
\triangleright \text { refer algorithm } 6
$$

3.3.3 Crossover

The two unique job orders $\left(\mathbf{O}_{\mathbf{1}}\right.$ and $\left.\mathbf{O}_{\mathbf{2}}\right)$ are obtained through selection operation. The crossover we are implementing here is two point. Randomly the points are obtained such that first point
is always less than half of the job order and second is either equal to half or greater. This point selection can be of other ways too. The offspring generation has mainly three steps, copying the job order from the beginning until the start point from a parent (say $\mathbf{O}_{\mathbf{1}}$), copying the job order from the start point to the end point inclusive from another parent (say $\mathbf{O}_{\mathbf{2}}$) and finally copying the remaining job order from parent again(say $\mathbf{O}_{\mathbf{1}}$). While copying from the start point onward it is made sure that the job number has not occurred previously in the sequence. If, for a position in the new job order, the job number matches then the next job number is taken and if it reaches the end of the job order in parent then it again scans from the beginning to find unmatched job number and then copy it to the new job order. This occurs twice to create two offspring. Below is the algorithm illustrating it.

```
Algorithm 7 Crossover Algorithm
    Input: (i) Job Order \(\mathbf{O}_{\mathbf{1}}\) (ii) Job Order \(\mathbf{O}_{\mathbf{2}}\)
    Output: (i) New Job Order \(\mathbf{O}_{\mathbf{1}}{ }^{\prime}\) (ii) New Job Order \(\mathbf{O}_{\mathbf{2}}{ }^{\prime}\)
    Initialize the required parameters, start point \(s p\), end point \(e p\)
    \(s p \leftarrow \operatorname{mynrand}(1,(\) totalJob \(/ 2)-1) \quad \triangleright\) refer appendix A
    \(e p \leftarrow \operatorname{mynrand}(\) totalJob \(/ 2\),totalJob - 1)
    while \(i<s p\) do
        \(\mathbf{O}_{\mathbf{1}}{ }^{\prime}[i] \leftarrow \mathbf{O}_{\mathbf{1}}[i]\)
        \(\mathbf{O}_{\mathbf{2}}{ }^{\prime}[i] \leftarrow \mathbf{O}_{\mathbf{2}}[i]\)
    for \(i=s p\) till \(i=e p\) do \(\quad \triangleright\) for \(\mathbf{O}_{\mathbf{1}}{ }^{\prime}\)
        flag \(\leftarrow\) true
        while flag do
            if \(\left(\mathbf{O}_{\mathbf{1}}[i] \neq \mathbf{O}_{\mathbf{2}}[i]\right)\) and \(\left(\mathbf{O}_{\mathbf{2}}[i]\right.\) does not exists in any \(\left.\mathbf{O}_{\mathbf{1}}{ }^{\prime}[i]\right)\) then
                    \(\mathbf{O}_{\mathbf{1}}{ }^{\prime}[i] \leftarrow \mathbf{O}_{\mathbf{2}}[i]\)
                flag \(\leftarrow\) false
            else
                Select next job order from \(\mathbf{O}_{\mathbf{2}}\)
    Repeat similarly from step 7 to 14 for \(\mathbf{O}_{\mathbf{2}}{ }^{\prime}\)
    Return \(\mathbf{O}_{1}{ }^{\prime}, \mathbf{O}_{\mathbf{2}}{ }^{\prime}\)
```


3.3.4 Mutation

The obtained new job orders \mathbf{O}^{\prime} after crossover are subjected to mutation. The mutation occurs based on the mutation probability p_{m}. Usually, p_{m} is very low.

```
Algorithm 8 Mutation Algorithm
    Input: Job Order \(\mathbf{O}^{\prime}\)
    Output: Mutated Job Order \(\mathbf{O}^{\prime}\)
    Initialize the required parameters \(a, b\)
    flag \(\leftarrow\) true
    while flag do
        \(a=\operatorname{mynrand}(0\), totalJobs -1\() \quad \triangleright\) refer appendix A
        \(b=\) mynrand \((0\), totalJobs -1\()\)
        if \(a \neq b\) then flag \(\leftarrow\) false
    \(\operatorname{swap}\left(\mathbf{O}^{\prime}, a, b\right) \quad \triangleright\) refer appendix A
    return \(\mathbf{O}^{\prime}\)
```


3.4 Population Generation

The new population for each generation are generated using the operators selection, crossover and mutation. The steps for new population generation uses algorithm 6 , algorithm 7 and algorithm 8. There is chances of memory issues so proper cleanup are required after each generation. The algorithm for new population generation is illustrated as in algorithm 9 below:

3.5 GA multi-threading

Multi-threads are used in mainly two places in order to gain in performance. The initial population generation is done by multiple threads. Later the new population pool generation is also multithreaded. The threading approach is illustrated in the diagram below:

```
Algorithm 9 New GA Population Generation
    Input: (i) Job Machine Matrix \(\mathbf{M}\) (ii) Population \(\mathbf{P}\) (iii) Cumulative Cmax Array \(\mathbf{P}^{\mathbf{c}}\)
    (iv) Population Size \(\mathbf{S}\) (v) Top \(\delta \%\) job orders \(\mathbf{T}\)
    Output: (i) New Population \(\mathbf{P}^{\prime}\) (ii) Top \(\delta \%\) job orders \(\mathbf{T}\) (iii) New Cumulative Cmax Array
    \(\mathbf{P}^{\mathbf{\prime C}}\)
    Initialize the required parameters, \(\mathrm{i}=0, \mathbf{P}^{\prime}\)
    \(\mathrm{i} \leftarrow(\mathbf{S} * \delta \%)-1\)
    \(\mathbf{P}^{\prime} \stackrel{\text { insertall }}{\leftarrow} \mathbf{T} \quad \triangleright\) insert top job orders from current population to new.
    Update \(\mathbf{P}^{\mathbf{\prime c}}\) using \(\mathbf{T}\)
    while \(\mathrm{i}<\mathbf{S}\) do
        \(a=\) higherProbJob \(\left(\mathbf{P}^{\mathbf{c}} \mathbf{,} \mathbf{S}\right) \quad \triangleright\) refer algorithm 6
        \(b=\) higherProbJob \(\left(\mathbf{P}^{\mathbf{c}}, \mathbf{S}\right)\)
        while \(a=b\) do
                \(b=\) higherProbJob \(\left(\mathbf{P}^{\mathbf{c}}, \mathbf{S}\right)\)
        \(\mathrm{O}_{\mathbf{1}} \leftarrow \mathrm{P}[\mathrm{a}]\)
        \(\mathrm{O}_{2} \leftarrow \mathrm{P}[\mathrm{b}]\)
        \(\mathbf{O}^{\prime}{ }_{1}, \mathbf{O}^{\prime}{ }_{2} \leftarrow \operatorname{crossover}\left(\mathbf{O}_{\mathbf{1}}, \mathbf{O}_{\mathbf{2}}\right) \quad \triangleright\) refer algorithm 7
        \(\mathbf{O}^{\mathbf{m}} \mathbf{1} \leftarrow \operatorname{mutate}\left(\mathbf{O}^{\prime}{ }_{1}\right) \quad \triangleright\) refer algorithm 8
        \(\mathrm{O}^{\mathbf{m}}{ }_{\mathbf{2}} \leftarrow \operatorname{mutate}\left(\mathbf{O}^{\prime}{ }_{\mathbf{2}}\right)\)
        Insert \(\mathbf{O}^{\mathbf{m}}{ }_{1}\) and \(\mathbf{O}^{\mathbf{m}} \mathbf{2}^{\text {into }} \mathbf{P}^{\mathbf{\prime}}\) and update \(\mathbf{P}^{\mathbf{\prime} \mathbf{c}}\)
        for each element \(t\) in \(\mathbf{T}\) do \(\quad \triangleright\) To get ranked top \(\delta \%\) job orders.
            if \(t . C \max \leq \mathbf{O}^{\mathbf{m}}{ }_{1} . C \max\) then
                    Replace in \(\mathbf{T}\) with \(\mathbf{O}^{\mathbf{m}}{ }_{1}\) then terminate loop.
        for each element \(t\) in \(\mathbf{T}\) do
            if \(t . C \max \leq \mathbf{O}^{\mathbf{m}}{ }_{\mathbf{2}} . C \max\) then
            Replace in \(\mathbf{T}\) with \(\mathbf{O}^{\mathbf{m}} \mathbf{2}^{\text {then }}\) therminate loop.
    Release memory of \(\mathbf{P}, \mathbf{P}^{\mathbf{\prime}}\)
    Return \(\mathbf{P}^{\mathbf{\prime}}, \mathbf{P}^{\mathbf{c}}, \mathbf{T}\)
```


Figure 3.1: Multi-Thread GA Approach illustration

Chapter 4

Results

The algorithms were converted to program and results were obtained. The results were computed as a single thread as well as multi-thread. For the case of multiple threads, we have used eight threads. We have used C programming of version C99. The machine we have used is java.cs.unlv.edu and visual studio 2017 IDE is used. The problem files were obtained from New hard benchmark for flow shop scheduling problems minimising makespan ${ }^{[E v a 15]}$. The machine configuration we have used is:

```
OS
GNU/Linux
Kernel Version
#1 SMP Fri Feb 1 14:54:57 UTC 2019
Kernel Release
3.10.0-957.5.1.el7.x86_64
CPU
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 8
Vendor ID: GenuineIntel
CPU family: 6
Model: 58
Model name: Intel(R) Xeon(R) CPU E3-1240 V2 @ 3.40GHz
CPU MHz: 1643.969
CPU max MHz: 3800.0000
CPU min MHz: 1600.0000
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
MEMORY
Memory block size: 128M
Total online memory: 32G
Total offline memory: OB
```

Figure 4.1: Machine Configuration

4.1 Exhaustive Search Results

The results were generated only from problems of jobs 10 and machines 5, 10, 15 and 20 which are in small set problems from VFR benchmark problems. Each problem has 10 different sets. The number of solutions to calculate in order to get all the optimal is given by the factorial of the number of jobs (for 10 jobs, $10!=3628800$ solutions). In addition, we have done the calculation for all the optimal for the problem. The speedup is calculated by dividing the execution time of a single thread by the execution time of multi-thread. The comparative results for single thread and multi-thread along with speedup is shown below:

S.N.	Problem	Count	Time (Th 1)	Time (Th 8)	Speedup
1	$10 _5 _1$	2228	1341.94202	932.01001	1.43984
2	$10 _5 _2$	30	1310.16406	922.09302	1.42086
3	$10 _5 _3$	36	1333.31397	930.43103	1.43301
4	$10 _5 _4$	26	1327.45300	921.53998	1.44047
5	$10 _5 _5$	12	1333.36597	939.31598	1.41951
6	$10 _5 _6$	323	1312.76599	923.65302	1.42128
7	$10 _5 _7$	66	1328.79004	930.16998	1.42855
8	$10 _5 _8$	12	1329.18799	922.89801	1.44023
9	$10 _5 _9$	18	1331.31006	923.76599	1.44118
10	$10 _5 _10$	48	1325.68201	929.86597	1.42567
11	$10 _10 _1$	2	2445.39307	1576.40100	1.55125
12	$10 _10 _2$	548	2458.28809	1558.51807	1.57732
13	$10 _10 _3$	24	2427.65991	1564.85107	1.55137
14	$10 _10 _4$	4	2455.43604	1560.08594	1.57391
15	$10 _10 _5$	5	2421.36206	1575.70496	1.53668
16	$10 _10 _6$	317	2426.29590	1582.04297	1.53365
17	$10 _10 _7$	1	2432.15088	1566.06494	1.55303
18	$10 _10 _8$	48	2437.12695	1556.12598	1.56615
19	$10 _10 _9$	6	2451.75708	1572.51502	1.55913
20	$10 _10 _10$	15	2447.73193	1574.06604	1.55504

Table 4.1 continued from previous page

S.N.	Problem	Count	Time (Th 1)	Time (Th 8)	Speedup
21	10_15_1	1	3527.47998	2177.64111	1.61986
22	10_15_2	1	3527.82007	2190.71191	1.61035
23	10_15_3	1	3509.75708	2196.44092	1.59793
24	10_15_4	5	3520.12891	2171.95313	1.62072
25	10_15_5	2	3503.35400	2196.25610	1.59515
26	10_15_6	1	3498.88794	2195.74512	1.59349
27	10_15_7	56	3539.15405	2186.43799	1.61868
28	10_15_8	9	3514.88208	2176.32690	1.61505
29	10_15_9	15	3531.58789	2202.57910	1.60339
30	10_15_10	1	3529.57495	2199.30005	1.60486
31	10_20_1	2	4639.98682	2852.52002	1.62663
32	10_20_2	1	4600.63721	2872.04102	1.60187
33	10_20_3	1	4594.14600	2889.40210	1.59000
34	10_20_4	4	4628.41992	2859.86401	1.61841
35	10_20_5	2	4594.84180	2841.83594	1.61686
36	10_20_6	218	4621.86523	2874.50195	1.60788
37	10_20_7	1	4625.17676	2847.19702	1.62447
38	10_20_8	2	4645.15820	2872.38989	1.61718
39	10_20_9	3	4601.27197	2869.10010	1.60373
40	10_20_10	2	4621.06104	2865.68604	1.61255

Table 4.1: Exhaustive search result single and multi threads with optimal results count.

The table 4.1 is summarized in terms of the number of machines and we get the following result.

Figure 4.2: Machine based Threaded and Non-Threaded comparison with speedup

The threading seems to give an average speedup of 1.5. It is expected to increase the speed of execution by 8 times as we use eight threads but only 1.5 is obtained. This happened because of Amdahl's law ${ }^{[G e n 67]}$, which states, there is only a certain percentage (i.e. less than 100%) of execution time which can be subjected to the speedup. But as we go on increasing more jobs this approach wouldn't be enough to calculate optimal as the number of solution size increases exponentially.

4.2 Branch and Bound Algorithm Results

The next implementation Branch and Bound algorithm provided better results. The results for the same problem as of exhaustive search was taken. The comparative analysis of the algorithm based on execution time and nodes visited with and without threading along with speedup is tabulated below:

S.N.	Problem Size	BB		BB Threaded		BB /BB Th	Ex Th /BB Th
		Time	Node Visited	Time	Node Visited		
1	10_5_1	385.05801	1289946	250.62300	1124397	1.53640	3.71877
2	10_5_2	44.01800	172967	25.69200	144731	1.71330	35.89028
3	10_5_3	62.76900	250422	37.32700	217280	1.68160	24.92649
4	10_5_4	58.16800	234954	40.32100	214046	1.44262	22.85509
5	10_5_5	4.04000	12520	3.64300	16025	1.10898	257.84133
6	10_5_6	12.77600	47784	13.14300	51025	0.97208	70.27718
7	10_5_7	35.44700	140861	24.56200	132755	1.44316	37.87029
8	10_5_8	60.72302	244797	32.65100	174194	1.85976	28.26553
9	10_5_9	1.89900	4279	1.57200	4507	1.20802	587.63740
10	10_5_10	89.51600	361014	46.94700	280575	1.90675	19.80672
11	10_10_1	57.54300	151556	29.01200	143617	1.98342	54.33617
12	10_10_2	271.76502	790482	142.21503	731582	1.91094	10.95888
13	10_10_3	151.82001	245277	43.97800	229746	3.45218	35.58259
14	10_10_4	95.69500	224473	40.99800	200530	2.33414	38.05273
15	10_10_5	24.67600	57958	11.19000	55244	2.20518	140.81367
16	10_10_6	158.48300	453318	80.11900	422942	1.97810	19.74616
17	10_10_7	276.18103	803231	118.64200	632401	2.32785	13.19992
18	10_10_8	95.78300	130833	27.13900	124448	3.52935	57.33911
19	10_10_9	25.94100	41289	9.45500	38058	2.74363	166.31571
20	10_10_10	157.42000	384958	80.25500	407163	1.96150	19.61331
21	10_15_1	81.05500	133817	35.69400	130673	2.27083	61.00860
22	10_15_2	104.81200	189062	40.79900	159475	2.56898	53.69524
23	10_15_3	234.21800	435419	65.86400	285716	3.55609	33.34813
24	10_15_4	364.97803	725653	158.66400	671070	2.30032	13.68901
25	10_15_5	52.03400	70898	22.34500	78818	2.32866	98.28849
26	10_15_6	60.20400	97532	23.55500	89527	2.55589	93.21779
27	10_15_7	242.08200	475161	122.84802	458486	1.97058	17.79791

Table 4.2 continued from previous page

S.N.	Problem Size	BB		BB Threaded		BB /BB Th	Ex Th /BB Th
		Time	Node Visited	Time	Node Visited		
28	$10 _15 _8$	164.58000	310466	57.57000	230850	2.85878	37.80314
29	$10 _15 _9$	162.23900	293375	63.21900	276696	2.56630	34.84046
30	$10 _15 _10$	71.40997	112719	31.05200	113137	2.29969	70.82636
31	$10 _20 _1$	249.46500	295685	80.60500	267074	3.09491	35.38887
32	$10 _20 _2$	166.57800	197686	61.16300	181222	2.72351	46.95717
33	$10 _20 _3$	418.05899	594717	132.83200	475108	3.14728	21.75230
34	$10 _20 _4$	79.84800	82861	35.50800	92656	2.24873	80.54140
35	$10 _20 _5$	241.64301	299718	97.46400	271912	2.47931	29.15780
36	$10 _20 _6$	144.31500	171803	58.46000	173378	2.46861	49.17041
37	$10 _20 _7$	100.94400	109576	34.58300	93880	2.91889	82.32938
38	$10 _20 _8$	82.06900	84133	35.27500	84345	2.32655	81.42848
39	$10 _20 _9$	98.76000	109283	49.70100	144366	1.98708	57.72721
40	$10 _20 _10$	161.92900	186145	76.32200	219059	2.12166	37.54731

Table 4.2: Execution time and node visited results for single and multi-threaded comparison with speedup

In table 4.2, it is clearly observed from the results that we gain performance when multithreading is used. The execution time of single and multi-threading are summarized in terms of average time, maximum time, minimum time and median time in order to understand the algorithm's performance from different prospect.

We found out the execution time was decreased for multi-threading which can be easily seen in figure 4.3. The data obtained is summarized and we get speedup summary as the maximum 3.556 , minimum 0.972 , average 2.252 and median 2.285 . Since the median is higher than average we can say the speedup is more skewed towards the left which is low. Yet, we can see there is good speedup factor. Similarly, we have calculated the execution time of multi-threaded exhaustive search to multi-threaded branch and bound on table 4.2. The summarized speedup results are way

Figure 4.3: Execution Time comparison for Single and Multi-Threaded
better with average 67.039 , maximum 587.637, minimum 3.718 and median 37.836 . The median is lower than average which means there are higher speedup values in comparison to lower ones.

Figure 4.4: Nodes Visited comparison for Single and Multi-Threaded

The next is, we put the nodes visited by the branch and bound method based on single and multi-
thread are summarized in terms of their average node visited, maximum nodes visited, minimum nodes visited and median of nodes visited. It is clearly visible from figure 4.4, in every aspect the multi-threaded approach outperforms the single thread. In order to get optimal, for the case of 10 jobs, the exhaustive search has to calculate 3628800 solutions which we can see has been drastically reduced in case of branch and bound. The number of nodes visited is summarized as maximum 1124397, minimum 4507, average 246068 and median 177708. This shows that we were able to reduce a lot of computation (only 30% get optimal even for maximum nodes visited).

The result is also compared to the result from A branch-and-bound method to minimize the makespan in a permutation flow shop with blocking and setup times ${ }^{[T N 17] . ~ O n l y ~ t h e ~ r e l e v a n t ~}$ problems were taken and compared:

Problem Size	BB(TN)		BB(here)		Speedup
	Time	Nodes	Time	Nodes	
$10 _5$	54930	199743.05	47.64	235953.50	1153.02
$10 _10$	129950	270314.60	58.30	298573.10	2228.98

Table 4.3: BB results comparison with Takano and Nagano [TN17]

The table 4.3 shows our method visits more node in comparison to that of Takano and Nagano's results. However, there is a significant gain in terms of the execution time. In addition, the speedup is even better for a larger problem.

4.3 Genetic Algorithm Results

The genetic algorithm was used to calculate near-optimal solutions for all the small size problems from VFR benchmark problems with varied population size and generations. The results are generated varying the generation and the population size. Further, the set of 10 problems of each problem size are averaged in terms of the approximation ratio (AR) and the execution time. The AR here denotes how close to optimal we were able to get the makespan. In addition, the exact optimal obtained for that problem size is also noted.

We have results summarized for twenty-four different problem size into three different tables. Each table has records for two different values of generation and population. In the first table, we took 50 population size and generation of 50 and 100 . Similarly on the second table population is increased to 100 and generations to 100 and 1000. The third table has records for generation 2000 and population 100 as well for generations 1000 and population 1000 .

S.N.	Problem Size	Generation 50 Population 50			Generation 100 Population 50		
		Ave AR	Ave Time	Count	Ave AR	Ave Time	Count
1	10_05	1.00539	41.87093	4	1.00162	79.26700	7
2	10_10	1.00483	33.35743	4	1.00643	78.45760	3
3	10_15	1.00950	33.33077	0	1.00248	77.08480	2
4	10_20	1.00920	33.92823	1	1.00410	78.52070	2
5	20_05	1.04371	39.08390	0	1.03076	79.60833	0
6	20_10	1.07757	38.15840	0	1.06539	73.98053	0
7	20_15	1.07059	38.61563	0	1.06261	70.66593	0
8	20_20	1.06446	37.74750	0	1.05550	68.19177	0
9	30_05	1.02147	39.68787	0	1.01935	74.48783	0
10	30_10	1.10117	38.28437	0	1.09125	71.27473	0
11	30_15	1.11074	36.78903	0	1.09393	68.17823	0
12	30_20	1.09615	35.49190	0	1.08396	65.73140	0
13	40_05	1.02954	40.26257	0	1.02016	72.73687	1
14	40_10	1.09974	37.50417	0	1.08995	73.94120	0
15	40_15	1.11996	35.35737	0	1.10796	70.73783	0
16	40_20	1.12134	36.75620	0	1.10704	69.20780	0
17	50_05	1.02196	35.74777	0	1.01411	69.48460	0
18	50_10	1.09544	33.94417	0	1.08130	66.22093	0
19	50_15	1.13573	33.30110	0	1.11449	64.89777	0
20	50_20	1.13615	33.40837	0	1.12478	64.60513	0
21	60_05	1.03200	29.98170	0	1.01900	57.68743	0
22	60_10	1.10462	29.02387	0	1.08971	56.20353	0
23	60_15	1.13586	28.81720	0	1.12293	56.09087	0
24	60_20	1.14475	28.95177	0	1.13094	56.20207	0

Table 4.4: Genetic algorithm summary results 1

S.N.	Problem Size	Generation 100 Population 100			Generation 1000 Population 100		
		Ave AR	Ave Time	Count	Ave AR	Ave Time	Count
1	10_05	1.00184	70.42243	8	1.00014	637.15124	9
2	10_10	1.00304	67.30763	5	1.00055	563.00970	8
3	10_15	1.00451	66.25617	3	1.00145	554.71808	7
4	10_20	1.00441	67.27426	3	1.00000	549.31816	10
5	20_05	1.03209	68.53643	0	1.01390	558.81753	0
6	20_10	1.05253	63.50790	0	1.03567	548.49307	0
7	20_15	1.05213	55.56420	0	1.02947	540.93880	0
8	20_20	1.04463	55.47463	0	1.02646	537.31767	0
9	30_05	1.01604	56.46510	1	1.00770	551.06350	3
10	30_10	1.07758	55.59820	0	1.05031	541.44977	0
11	30_15	1.09166	55.69220	0	1.05935	1235.39293	0
12	30_20	1.07884	56.01157	0	1.04972	2297.76910	0
13	40_05	1.01835	56.01090	1	1.00590	998.44786	3
14	40_10	1.08696	55.90403	0	1.05410	630.12128	0
15	40_15	1.10128	55.95207	0	1.06491	544.53797	0
16	40_20	1.10191	56.79460	0	1.07217	552.93111	0
17	50_05	1.01267	56.25187	1	1.00408	630.04404	3
18	50_10	1.07916	56.33490	0	1.04923	547.22150	0
19	50_15	1.11664	56.96643	0	1.07751	556.66084	0
20	50_20	1.11920	58.15757	0	1.08277	565.84767	0
21	60_05	1.02101	56.49667	0	1.00436	1189.01226	2
22	60_10	1.08601	57.13873	0	1.05288	2486.81500	0
23	60_15	1.11879	58.59247	0	1.07877	635.25043	0
24	60_20	1.12831	59.89063	0	1.08899	580.39360	0

Table 4.5: Genetic algorithm summary results 2

S.N.	Problem Size	Generation 2000 Population 100			Generation 1000 Population 1000		
		Ave AR	Ave Time	Count	Ave AR	Ave Time	Count
1	$10 _05$	1	1231.2886	10	1	1912.20807	10
2	$10 _10$	1.00085	1127.04913	8	1	1937.68647	10
3	$10 _15$	1.00044	1109.87139	8	1	1944.28724	10
4	$10 _20$	1	1099.07697	10	1	1933.09803	10
5	$20 _05$	1.00956	1188.34078	0	1.00356	1902.75586	5
6	$20 _10$	1.03018	1097.1213	0	1.01747	1913.47974	0
7	$20 _15$	1.0255	1082.8509	0	1.01744	1913.43444	0
8	$20 _20$	1.01966	1075.11493	0	1.01378	2023.56199	0
9	$30 _05$	1.00662	1166.30976	3	1.00544	1945.76337	5
10	$30 _10$	1.04901	1083.87214	0	1.0433	1968.38396	0
11	$30 _15$	1.04903	1083.37943	0	1.04395	2069.26316	0
12	$30 _20$	1.04918	2744.781	0	1.03957	2277.33846	0
13	$40 _05$	1.00336	1148.62089	5	1.00301	1998.68504	4
14	$40 _10$	1.04807	1091.90557	0	1.04423	2140.90675	0
15	$40 _15$	1.06168	1238.30443	0	1.05737	2420.30684	0
16	$40 _20$	1.06874	4779.18795	0	1.06045	2785.26738	0
17	$50 _05$	1.00187	1171.33963	4	1.00287	2271.09966	3
18	$50 _10$	1.04451	1094.29702	0	1.04193	2452.44397	0
19	$50 _15$	1.07411	2802.18254	0	1.06927	4018.52802	0
20	$50 _20$	1.07756	4038.72514	0	1.07054	3988.47355	0
21	$60 _05$	1.00315	1172.21559	3	1.00462	2716.75994	2
22	$60 _10$	1.05169	1106.39646	0	1.04525	6880.58966	0
23	$60 _15$	1.06941	5149.50628	0	1.06913	3383.70755	0
24	$60 _20$	1.08586	1252.06204	0	1.0759	6904.88014	0
			0		0	0	

Table 4.6: Genetic algorithm summary results 3

We accumulated the results of table 4.4, table 4.5 and table 4.6 based on number of jobs and number of machines. The results are compared in terms of the execution time, the AR achieved
and the number of exact optimal reached. The accuracy calculation formula is:

$$
A R=\frac{G A \text { Value }}{\text { Optimal }}
$$

The AR $=1$ means the algorithm has generated the optimal perfectly. Any value higher than 1 means the result from GA is deviated from the optimal.

Analysis per number of jobs

The figure 4.5 shows the time comparison. It is seen with an increase in the number of jobs the execution time increase. The execution time increase for change in configuration values which is also increasing.

Figure 4.5: Averaged execution time comparison summarized over number of jobs

For an increase in the number of jobs the AR indicate more deviation from the optimal as seen in the figure 4.6. But with a change in configuration GA provides better results and converge towards the optimal.

The third comparison in the figure 4.7 shows that more optimal is achieved as we increase the value of generation and population size. For a lower number of job we are able to get more optimal.

Figure 4.6: Averaged AR comparison summarized over number of jobs

Figure 4.7: Exact optimal count comparison summarized over number of jobs

Analysis per number of machines

Based on the machine and the configuration values the GA tend to have an increase in the execution time. The respective execution time plot is shown in figure 4.8:

Figure 4.8: Averaged execution time comparison summarized over number of machines

The AR comparison is similar to the AR comparison based on the number of jobs as shown earlier. The result tends to be nearer to the optimal as the configuration is changed to higher values. Also, AR is better for problems with less number of machines. It is shown in the figure 4.9:

Figure 4.9: Averaged AR comparison summarized over number of machines

The trend is similar to that of job-based comparison for the number of optimal counts. More optimal is achieved as we change the configuration to higher values and count are higher for less number of machines. It is shown in the figure 4.10:

Figure 4.10: Exact optimal count comparison summarized over number of machines

4.4 Problems Faced

There are various technical problems that occurred during the thesis. The problem given by VFR was in a different format to read which was adjusted while reading from the file and creating the matrix. The multi-threading implementation initially raised the issue of race conditions as the original algorithm's approach didn't fit for the concurrent approach. With the use of multi-thread, the issue of memory leak arose which was handled by proper allocation and release of memory. The default library in C wasn't good enough for generating higher value random number. A different random number generator was used for the case. There was an issue of lack of memory for some case so many other problems weren't computed. For results comparison, there were no other results found in case of the VFR problems which are different from that of Taillard's.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We here have shown the improvement in algorithms for performance as well compared the obtained results. We achieved a maximum speedup of 1.6 in case of exhaustive search which can be further increased with an increase in the number of threads. We also have computed for all the optimal for the problem which can be reflected as a basis for near-optimal methods.

The next part, Branch and Bound performs way better in comparison to that of exhaustive search. A minimum speedup of 3 to 587 is obtained for the same problem set in compared to exhaustive search. Moreover, in terms of execution time, our branch and bound algorithm had speedup over 1153.02 compared to that of the branch and bound algorithm of Takano and Nagano. This suggests our approach of the branch and bound served well.

In the case of the genetic algorithm, we scale up our problem solving capacity than that of the other two approaches. Comparatively, we have observed the variation of results based on the configuration of generations and population size. It can be clearly seen that the higher the number of generation and population size the better are the results. But, there is the cost of higher execution time. Also, the population size seems to have a larger impact on the result than the generations.

Overall, we have computed a benchmark for the VFR permutation flow shop problems. These problems seem to have higher complexity with an increase in the number of jobs as well as an increase in the number of machines.

5.2 Future Work

The exhaustive search approach can be made as distributed with multi-threading approach which could give results for a larger problem. The branch and bound algorithm can be extended as distributed with multi-threading approach. In addition, the proper memory management may increase the algorithm's capacity of solving a larger problem. In genetic algorithm, a varying configuration can help in determining the best values of generations and population size based on the problem size. A proper approach to determine mutation percentage and best carry over chromosome percentage may yield better results. Also, properly random initial random population generation method may provide better result.

Appendix A

Selected Source Code

Random Generator

```
/***Provides higher range random number ***/
unsigned long long llrand() {
    unsigned long long r = 0;
    for (int i = 0; i < 5; ++i) {
        r = (r << 15) | (rand() & 0x7FFF);
    }
    return r & 0xFFFFFFFFFFFFFFFFFULL;
}
/***Provides a random number between specified range***/
unsigned int mynrand(unsigned int lower, unsigned int upper)
{
    return (lower + llrand() % (upper - lower + 1));
}
```


Swap

```
/***Swaps values at specified places***/
void swap(unsigned int *a, unsigned int i, unsigned int j)
{
    unsigned int temp = a[i];
    a[i] = a[j];
    a[j] = temp;
}
```

Lower Bound for Root
unsigned int GetInitialLBforRoot() \{

```
    unsigned int* sum1 = (unsigned int *)malloc(totalJobs * sizeof(unsigned int));
    unsigned int* sum3 = (unsigned int *)malloc(totalJobs * sizeof(unsigned int));
    unsigned int sum2 = 0;
    unsigned int minFirstJob = 0;
    unsigned int minLastJob = 0;
    for (unsigned int m = 0;m < totalMachines;m++) {
        tempLB = 0;
        sum2 = 0;
        minFirstJob = 0;
        minLastJob = 0;
        //find min sum for first jobs before the machine m.
        for (c = 0;c < totalJobs;c++) {
        sum1[c] = 0;
        for (a = 0;a < m;a++) {
        sum1[c] += originalMatrix[a] [c];
        }
        //sum all jobs in the machine m
        sum2 += originalMatrix[m][c];
        //find sum of last jobs on remaining machine after machine m
        sum3[c] = 0;
        for (a = m + 1;a < totalMachines;a++) {
            sum3[c] += originalMatrix[a][c];
        }
        if (c != 0) {
                if (sum1[minFirstJob] > sum1[c]) {
                minFirstJob = c;
                }
                if (sum3[minLastJob] > sum3[c]) {
                                    minLastJob = c;
            }
        }
    }
    tempLB = sum1[minFirstJob] + sum2 + sum3[minLastJob];
    if (tempLB > LB) {
        LB = tempLB;
    }
}
free(sum1);
free(sum3);
return LB;
```

\}

Lower Bound for Node

unsigned int level) \{
register unsigned int m, c, a;
unsigned int tempLB, tempClr, sum2, minLastJobs, LB = 0;
unsigned int* sum3 = malloc(totalJobs * sizeof(unsigned int)); for ($\mathrm{m}=0 ; \mathrm{m}$ < totalMachines; $\mathrm{m}++$) \{
tempLB $=$ sum2 $=$ minLastJobs $=0$;
tempClr = GetPartialCmax(jOrder, level, m);
for ($c=0 ; c<t o t a l J o b s ~-~ l e v e l ; c++) ~\{~$
sum2 += originalMatrix[m][rOrder [c]];
sum3[c] = 0;
for ($\mathrm{a}=\mathrm{m}+1 ; \mathrm{a}$ < totalMachines; $\mathrm{a}++$) \{
sum3[c] += originalMatrix[a][rOrder [c]];
\}
if (c ! = 0) \{
if (sum3[minLastJobs] > sum3[c]) \{
minLastJobs $=c$;
\} \}
\}
tempLB = tempClr + sum2 + sum3[minLastJobs];
if (tempLB > LB) \{ LB = tempLB;
\}
\}
free(sum3);
return LB;
\}

Generate Partial Order

```
void GetPartialJoborders(unsigned int *partialJobOrder, unsigned int *remJobOrder,
            unsigned int currLevel, unsigned int remJobNo) {
    register unsigned int r = 0, c = 0;
    //transferred specified job from remaining order to fixed order
    partialJobOrder[currLevel] = remJobOrder[remJobNo];
    //remove the job no from remJobDrder
    for (c;c < totalJobs - currLevel;c++) {
            if (c != remJobNo) {
                remJobOrder[r] = remJobOrder[c];
                r++;
            }
    }
```


Bibliography

[AA98] A. Allahverdi and T. Aldowaisan. Job lateness in flowshops with setup and removal times separated. Journal of the Operational Research Society, 49(9):1001-1006, 1998.
[AA04] Tariq Aldowaisan and Ali Allahverdi. New heuristics for m-machine no-wait flowshop to minimize total completion time. Omega, 32(5):345-352, 2004.
[AGA99] Ali Allahverdi, Jatinder N.D Gupta, and Tariq Aldowaisan. A review of scheduling research involving setup considerations. Omega, 27(2):219-239, 1999.
[AHS00] I. N. Kamal Abadi, Nicholas G. Hall, and Chelliah Sriskandarajah. Minimizing cycle time in a blocking flowshop. Operations Research, 48(1):177-180, 2000.
[Ash70] Said Ashour. A branch-and-bound algorithm for flow shop scheduling problems. A I I E Transactions, 2(2):172-176, 1970.
[Bak75] Kenneth R. Baker. A comparative study of flow-shop algorithms. Operations Research, 23(1):62-73, 1975.
[Ban79] S. P. Bansal. On lower bounds in permutation flow shop problems. International Journal of Production Research, 17(4):411-418, 1979.
[Ber00] Edy Bertolissi. Heuristic algorithm for scheduling in the no-wait flow-shop. Journal of Materials Processing Technology, 107(1):459 - 465, 2000.
[BH91] Shaukat A. Brah and John L. Hunsucker. Branch and bound algorithm for the flow shop with multiple processors. European Journal of Operational Research, 51(1):8899, 1991.
[Bru07] Peter Brucker. Scheduling Algorithms. Springer Publications, 5th edition, 2007.
[CR96] Jacques Carlier and Ismal Reba. Two branch and bound algorithms for the permutation flow shop problem. European Journal of Operational Research, 90(2):238-251, 1996.
[DT64] Richard A. Dudek and Ottis Foy Teuton. Development of m-stage decision rule for scheduling n jobs through m machines. Oper. Res., 12(3):471-497, 1964.
[Eva15] Eva Vallada, Rubn Ruiz, Jose M. Framinan. New hard benchmark for flowshop scheduling problems minimising makespan. European Journal of Operational Research, 240:666-677, 2015.
[FGL04] J. M. Framinan, J. N. D. Gupta, and R. Leisten. A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. The Journal of the Operational Research Society, 55(12):1243-1255, 2004.
[Gen67] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. AFIPS spring joint computer conference, 1967.
[GJS76] M. R. Garey, D. S. Johnson, and Ravi Sethi. The complexity of flowshop and jobshop scheduling. Math. Oper. Res., 1(2):117-129, 1976.
[Gup71] Jatinder N. D. Gupta. A functional heuristic algorithm for the flowshop scheduling problem. Journal of the Operational Research Society, 22(1):39-47, 1971.
[Gup79] Jatinder N. D. Gupta. A review of flowshop scheduling research, pages 363-388. Springer Netherlands, Dordrecht, 1979.
[GZAT09] M. Gholami, M. Zandieh, and A. Alem-Tabriz. Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1):189-201, May 2009.
[HS96] Nicholas G. Hall and Chelliah Sriskandarajah. A survey of machine scheduling problems with blocking and no-wait in process. Operations Research, 44(3):510-525, 1996.
[IS65] Edward Ignall and Linus Schrage. Application of the branch and bound technique to some flow-shop scheduling problems. Operations Research, 13(3):400-412, 1965.
[JT90] Edward F. Stafford Jr and Fan T. Tseng. On the srikar-ghosh milp model for the ivx m sdst flowshop problem. International Journal of Production Research, 28(10):18171830, 1990.
[KM87] Sandeep Kochhar and Robert J.T. Morris. Heuristic methods for flexible flow line scheduling. Journal of Manufacturing Systems, 6(4):299-314, 1987.
[KS80] J. R. King and A. S. Spachis. Heuristics for flow-shop scheduling. International Journal of Production Research, 18(3):345-357, 1980.
[LCL93] Chung-Yee Lee, T. C. E. Cheng, and B. M. T. Lin. Minimizing the makespan in the 3machine assembly-type flowshop scheduling problem. Management Science, 39(5):616625, 1993.
[LLK78] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. A general bounding scheme for the permutation flow-shop problem. Operations Research, 26(1):53-67, 1978.
[LLRK78] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. A general bounding scheme for the permutation flow-shop problem. Oper. Res., 26(1):53-67, 1978.
[Lom65] Z. A. Lomnicki. A "branch-and-bound" algorithm for the exact solution of the threemachine scheduling problem. $O R, 16(1): 89-100,1965$.
[Lou96] Helena Ramalhinho Loureno. Sevast'yanov's algorithm for the flow-shop scheduling problem. European Journal of Operational Research, 91(1):176-189, 1996.
[LS00] In Lee and Michael J Shaw. A neural-net approach to real time flow-shop sequencing. Computers 83 Industrial Engineering, 38(1):125-147, 2000.
[MB67] G. B. McMahon and P. G. Burton. Flow-shop scheduling with the branch-and-bound method. Operations Research, 15(3):473-481, 1967.
[Mit98] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1st edition, 1998.
[Moc95] Joo Vitor Moccellin. A new heuristic method for the permutation flow shop scheduling problem. Journal of the Operational Research Society, 46(7):883-886, 1995.
[NEH83] Muhammad Nawaz, E Emory Enscore, and Inyong Ham. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1):91-95, 1983.
[OP08] Djamila Ouelhadj and Sanja Petrovic. A survey of dynamic scheduling in manufacturing systems. Journal of Scheduling, 12(4):417, Oct 2008.
[Pot80] C.N. Potts. An adaptive branching rule for the permutation flow-shop problem. European Journal of Operational Research, 5(1):19-25, 1980.
[PPE84] Yang Byung Park, C. Dennis Pegden, and E. Emory Enscore. A survey and evaluation of static flowshop scheduling heuristics. International Journal of Production Research, 22(1):127-141, 1984.
[PSS $\left.{ }^{+} 95\right]$ C. N. Potts, S. V. Sevast'janov, V. A. Strusevich, L. N. van Wassenhove, and C. M. Zwaneveld. The two-stage assembly scheduling problem: Complexity and approximation. Operations Research, 43(2):346-355, 1995.
[R.L79] R.L Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics, 5:287-326, 1979.
[RMA05] Rubn Ruiz, Concepcin Maroto, and Javier Alcaraz. Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics. European Journal of Operational Research, 165(1):34-54, 2005.
[RMB99] Roger Z. Ríos-Mercado and Jonathan F. Bard. A branch-and-bound algorithm for permutation flow shops with sequence-dependent setup times. IIE Transactions, 31(8):721-731, 1999.
[RWCM03] William L. Maxwell Richard W. Conway and Louis W. Miller. Theory of Scheduling. Dover Publications, Inc., 1st edition, 2003.
[S05] S. Reza Hejazi * and S. Saghafian. Flowshop-scheduling problems with makespan criterion: a review. International Journal of Production Research, 43(14):2895-2929, 2005.
[Sal73] Michael S. Salvador. A solution to a special class of flow shop scheduling problems. In Salah E. Elmaghraby, editor, Symposium on the Theory of Scheduling and Its Applications, pages 83-91, Berlin, Heidelberg, 1973. Springer Berlin Heidelberg.
[SG86] Bellur N. Srikar and Soumen Ghosh. A milp model for the n-job, m-stage flowshop with sequence dependent set-up times. International Journal of Production Research, 24(6):1459-1474, 1986.
[SGM05] Nour El Houda Saadani, Alain Guinet, and Mohamed Moalla. A travelling salesman approach to solve the f/no-idle/cmax problem. European Journal of Operational Research, 161(1):11-20, 2005. IEPM: Focus on Scheduling.
[ST02] Edward F. Stafford and Fan T. Tseng. Two models for a family of flowshop sequencing problems. European Journal of Operational Research, 142(2):282-293, 2002.
[Szw71] Wlodzimierz Szwarc. Elimination methods in the m n sequencing problem. Naval Research Logistics Quarterly, 18(3):295-305, 1971.
[TJ01] Fan T. Tseng and Edward F. Stafford Jr. Two milp models for the n m sdst flowshop sequencing problem. International Journal of Production Research, 39(8):1777-1809, 2001.
[TN17] Mauricio Iwama Takano and Marcelo Seido Nagano. A branch-and-bound method to minimize the makespan in a permutation flow shop with blocking and setup times. Cogent Engineering, 4(1):1389638, 2017.
[WH89] Marino Widmer and Alain Hertz. A new heuristic method for the flow shop sequencing problem. European Journal of Operational Research, 41(2):186-193, 1989.

Curriculum Vitae

Graduate College
University of Nevada, Las Vegas

Hari Prasad Sapkota
harrysapkota@gmail.com

Degrees:
Master of Science in Computer Science 2019
University of Nevada Las Vegas

Thesis Title: Benchmarking Permutation Flow Shop Problem: Adaptive and Enumerative Approaches Implementations via Novel Threading Techniques

Thesis Examination Committee:
Chairperson, Dr. Wolfgang Bein, Ph.D.
Committee Member, Dr. Ajoy Datta, Ph.D.
Committee Member, Dr. Laxmi Gewali, Ph.D.
Graduate Faculty Representative, Dr. Henry Selvaraj, Ph.D.

