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Abstract

A large number of real-world planning problems are combinatorial optimization problems which

are easy to state and have a finite but usually very large number of feasible solutions. The min-

imum spanning tree problem and the shortest path problem are some which are solvable through

polynomial algorithms. Even though there are other problems such as crew scheduling, vehicle

routing, production planning, and hotel room operations which have no properties such as to solve

the problem with polynomial algorithms. All these problems are NP-hard. The permutation flow

shop problem is also NP-hard problem and they require high computation. These problems are

solvable as in the form of the optimal and near-optimal solution. Some approach to get optimal

are exhaustive search and branch and bound whereas near optimal are achieved annealing, Genetic

algorithm, and other various methods.

We here have used different approach exhaustive search, branch and bound and genetic algo-

rithm. We optimize these algorithms to get performance in time as well as get the result closer

to optimal. The exhaustive search and branch and bound gives all possible optimal solutions. We

here have shown the comparative result of optimal calculation for 10 jobs with varying machine

number up to 20. The genetic algorithm scales up and gives results to the instances with a larger

number of jobs and machines.
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Chapter 1

Introduction

The world is developing in various fields with the aid of technologies. The sequencing is one of

the common problem occurring frequently. The manufacturing sector, airlines sector, banking

sector and various other day to day life activities involve sequencing to great extent [RWCM03].

In economic and industrial field flow shop can be implied to great extent.This has lured many

researchers to work on problem with diverse classical assumptions and different objective functions

and by implementing various optimization techniques.There are two main elements of flow shop

problem: (i) M machines for job processing and (ii) N jobs to be processed on those machines.

The jobs and machines have their criteria. All jobs sequence execute in same machine order.

The job is not executed multiple times on same machine. A job cannot be executed on multiple

machines neither a machine can execute multiple jobs. At first Conway et al. (1967) have devised

the notation for flow shop with makespan criterion as n/m/F/cmax
[RWCM03] later Graham et al.

(1979) introduce new notation as F ||cmax
[R.L79]. The makespan criterion is defined as the total

time of completing all the jobs on all machines.This problem has (n!)m alternative sequence of

jobs over the machines. The classical flow shop problem is assumed to have a buffer or queue to

hold the jobs between the machines (Allahverdi et al. 1999 [AGA99]). Later different variants were

developed.Blocking flow shop problem was stated by Abadi, Hall and Sriskandarajah (1995) [AHS00].

Aldowaisan and Allahverdi (1998) gave a concept on no-wait flow shop problem [AA98]. The similar

concept was earlier pitched by Piehler (1960), Reddi and Ramamoorthy (1972), Bonney and Gundry

(1976), King and Spachis (1980), Gangadharan and Rajendran (1993) and Rock (1984) whereas no

intermediate queues (NIQ) flow shop problem was mentioned by Stafford (1988), Stafford and Tseng

(1990), and Wismer (1972) [S05] . The survey of Hall and Sriskandarajah (1996) aided to deduce

the computational complexity for a varieties of approach to problems describing also the different

1
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application [HS96]. Thus it make no-wait flow shop problem a topic of interest (e.g. Bertolissi

2000 [Ber00], Aldowaisan and Allahverdi 2004 [AA04], passim). In the beginning of 2000, hybrid flow

shop problems came to eyes of researchers.

The flow shop environment in real life scenario is not as stated in classical flow shop problem

where set-up times are assumed to be unaffected by the job's position in sequence. Hence set-up

time can be added in processing time of job. In fact the real life flow shop problem has sequence-

dependent set-up times (SDST). The surface mount technology (SMT) and printed circuit board

(PCB) manufacturing environments have SDST flow shop problem. A mixed integer linear program

(MILP) model is suggested first by Srikar and Ghosh (1986) for SDST flow shop problem [SG86].

Later, Stafford and Tseng (1990) [JT90] and Rios-Mercado and Bard (1999) [RMB99] did further

work on the problem. Tseng and Stafford (2001 [TJ01],2002 [ST02]) proposed two MILP models. The

flow shop problem with SDST and makespan criterion was taken into consideration by Ruiz et

al. (2004) [RMA05]. The good performing metaheuristics of a regular flow shop problem as well

as advanced genetic algorithms were proposed. The flow shop problem with setup times were

divided into four categories by Allahverdi et al. (1999) [AGA99] as sequence independent non-batch

set-ups, sequence-dependent non-batch set-ups, sequence independent batch set-ups, and sequence-

dependent batch set-ups [AGA99]. The researchers put their effort based on these categories to solve

the problem in real world. For PCB manufacturing environment Lee and Shaw (2000) have done

a great deal of work through the minimizing the objective function concept [LS00]. The travelling

salesman problem is used to model the problem F/no-idle/Cmax by Saadani et al. (2004) [SGM05].

All the previous mentioned are serial flow shop however the concept of a concurrency in flow shop

is shown by Lee et al. (1993) [LCL93] and Potts et al. (1995) [PSS+95].

Simultaneously, with the work on flow shop, the special case of the permutation flow shop was

also studied by the researchers with great deal of interest since 1960. In the permutation flow

shop problem the same job order is followed by all machines and is denoted as F |prmu|cmax
[R.L79].

Dudek and Teuton (1964) [DT64] had explained the basic assumptions for this problem in detail.

The optimal calculation approaches had been approached earlier by Szwarc (1997) [Szw71], Lageweg

et al(1978) [LLRK78], Potts (1980) [Pot80], and Carlier and Reba(1996) [CR96]. The permutation flow

shop problem is known to be a NP-hard problem for three or more machines [GJS76]. Hence, heuris-

tics approach had been a way of getting a near-optimal solutions. Yet, there is no perfect framework

that had been the best. Many researchers had tried to classify problem and the heuristics for better

results [Lou96]. Gupta(1979) [Gup79], King and Spachis(1980) [KS80] and Parl et al.(1984) [PPE84] had

2
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given the review on development of heuristics. All these heuristics happen to have different nature

such as computation time, complexity order or memory requirement. Further, Widmer and Hertz

(1989) [WH89], Moccellin (1995) [Moc95] and Nawaz et al.(1983) [NEH83] have worked on new better

heuristics. There were even earlier attempts to classify the flow shop heuristics as fixed functional

heuristics, floating functional heuristics, and synthetic functional heuristics. Framimam et al.(2004)

[FGL04] presented a general framework for the development of the heuristics. There are approaches

to handle the uncertainties that may occur during the job execution. Studies had been initiated by

Gholami, Zandieh, and Alem-Tabriz(2009) [GZAT09] and Ouelhadj and Petrovic(2009) [OP08] which

later grab more researchers towards the area. While the researchers are investing their effort on

various nature of permutation flow shop problem, we here took a simple dig on the exhaustive

search and branch and bound method for the optimal. The both methods are consuming the multi-

threading approach with some tweaks in the algorithm. In addition, for near-optimal solution, we

took genetic algorithm and converted it into a concurrent approach with some tweaks in the algo-

rithm. These methods requires extensive computation which we are trying to minimize and add the

concurrent approach for faster execution. It is also known that the optimal solution though branch

and bound techniques are most widely used to examine the performance for most studies involving

heuristics [BH91]. Hence, we here have expected these approach will aid in further research in the

field of static permutation flow shop problem.

In the first chapter we started with the previous related works followed by short introduction to

scheduling and shop problems. Later, flow shop and permutation flow shop problem are explained

in detail with example. We concluded first chapter with the algorithm for makespan calculation.

In chapter two, we briefly describe branch and bound algorithm along with the related history

and explained the implementation of BB algorithm in permutation flow shop problem. At the

end, we showed the multi-threaded approach of the BB algorithm. Genetic algorithm and its

implementation in detail is described in chapter three. The multi-threaded approach to genetic

algorithm for permutation flow shop problem is illustrated at the end of the chapter. The next

chapter is the results comparison and analysis followed by chapter with conclusion and future work.

1.1 Scheduling

A schedule is the allocation of intervals for each job to be processed on machines. The jobs can be

of n different types and machines can be m. For the illustrative purpose of jobs and its relation

to machines Gantt charts are good. There are two ways that are used in representing the Gantt

3
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chart, first, machine-oriented and next is job-oriented.

Figure 1.1: Machine oriented
Gantt Chart

Figure 1.2: Job oriented Gantt
Chart

As seen in the figure above, machine-oriented has machines fixed and jobs are places as per

intervals. Similarly, job oriented has jobs fixed and machines are places as per intervals.

1.1.1 Job Data

We follow Peter Brucker[Bru07] notation stating for scheduling problems. Ji is a job consisting of

operations Oi1, Oi2, ... , Oini where ni is number of operations for the job. For each operation

Oij, there is certain processing time pij. Assume Ji has ni = 1, its operation is now Oi1 only then

processing time is denoted by pi. ri is a release date, on which the first operation of Ji becomes

available for processing may be specified. Associated with each operation Oij is a set of machines

µij ⊆ {M1, . . . , Mm}. Oij may be processed on any of the machines in µij. Usually, all µij are

one element sets or all µij are equal to the set of all machines. Machine-oriented has dedicated

machines while job oriented has machines as parallel. Multi-purpose machines (MPM) are

adjusted such that they can process operation. These MPM are used in real-world problems like

flexible manufacturing has various steps of operations performed by machines with different tools.

While processing Oij may use all machines in the set µij, scheduling problems as such are called

multiprocessor task scheduling problems. A cost function fi(t) is defined by a due date

di and a weight wi measures the cost of completing Ji at time t. The symbols pi, pij, ri, di and wi

are all assumed to be integers. The scheduling problems are classified based on a three-fields α|β|γ

classification where α specifies the machine environment, β specifies the job characteristics

and γ denotes the optimality criterion. This classification scheme was introduced by Grahm et

al. [R.L79].

4
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1.1.2 Job Characteristics

There are at most six parameters to define the job characteristics usually β is used as β1, β2, β3,

β4, β5 ,and β6. Preemption is indicated by β1 as β1 = pmtn if allowed else β1 is not present in β.

Precedence relations is described through β2. The values for β2 varies as prec, intree (outtree), tree,

chains and sp-graph depending on different nature of jobs. If precedence relation is not there β2

is not included in β. Release dates specification for a job is handled through β3 = ri. β3 is not in

β when ri = 0 for all jobs. Processing time or operations behavior is stated as in β4. Job deadline

is specified through β5. Batching nature is represented by β6 as the values p-batch or s-batch if

present else β6 is not included in β.

1.1.3 Machine Environment

Similar to job characteristics, machine environment is addressed through α as α1 and α2. The values

of α1 are o, P, Q, R, PMPM, QMPM, G, X, O, J and F which has meaning as dedicated machines,

identical parallel machines, uniform parallel machines, unrelated parallel machines, multi-purpose

machines with identical speed, multi-purpose machines with uniform speed, general shop, mixed

shop, open shop, job shop and flow shop respectively. α2 represents the number of machines if

specified else machines count is arbitrary.

1.1.4 Optimality Criteria

γ is used as optimality criteria definition. Ci is denoted as finishing time for job Ji and cost is fi(Ci).

Bottleneck objectives and sum objectives are types of total cost functions denoted respectively below

as equations.

fmax(C) = max{f i(C i)|i = 1, ..., n}

and ∑
f i(C) =

n∑
i=1

f i(C i)

The schedule which minimizes these total cost functions is the aim of scheduling problem. Opti-

mality Criteria γ is set as γ = fmax or γ =
∑
f i also there are special functions too. The makespan

Cmax, total flow time
∑
C i and weighted flow time

∑
wiC i are some common objective functions.

In addition, objective functions with due date di associated jobs Ji have various definition as:

lateness Li = C i − di

5
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earliness Ei = max{0, di − C i}

tardiness T i = max{0, C i − di}

absolute deviation Di = |C i − di|

squared deviation Si = (C i − di)2

unit penalty U i =


0 if C i ≤ di

1 otherwise

A regular objective function is nondecreasing with respect to all variables Ci. Ei, Di and Si are

not regular and others are regular.

1.2 Flow Shop

It has been shown that the three or more machine permutation flow shop problems are NP-complete

problems (Gonzalez and Sahni, 1978). Some of other shop scheduling problems are open shop

problems, job shop problems, and mixed shop problems. These problems fall in general shop

problems category. The general shop problem consists of n number of jobs J1, J2, ... , Jn. Each Ji

having operations O1, O2, ... , Oni and each operations Oij have processing time pij. There are m

Machines M1, M2, ... , Mm. Each operations Oij must be processed on a machine µij ∈ {M1, M2,

... , Mm}. The operations of jobs have a precedence relationship. A machine can process a job at

a time and no two machines can process the same job at the same time. Job Ji has some objective

function of finishing time Ci and our objective is to find a feasible schedule that minimizes the

finishing times for all jobs J1, J2, ... , Jn. The assumption is that the objective function is regular.

1.2.1 Open Shop Problem

An open shop problem is defined such that there is no precedence relationship between operations

and each job have exactly m operations where operation Oij has to be processed in machine Mj.

1.2.2 Job Shop Problem

A generalized version of the flow shop problem is job shop problem. There are n jobs and m

machines. Operations vary based on the job number yet it preserves the order. Each operation

with their processing time is needed to be processed in a particular machine. Considering the
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finishing time of the last operation, the solution is to find the best possible schedule which has a

minimum value for the objective function.

1.2.3 Mixed Shop Problem

The mixed shop problem comprises the open shop problem and the job shop problem thus has open

shop and job shop jobs. There are bound of a job on number count as nO for open shop and nJ for

job shop.

1.2.4 Flow Shop Problem

There are Jobs such as J1, J2, ... , Jn and Machines such as M1, M2, M3, ... , Mm. These Jobs

has different operations such as O1, O2, O3, ... , Om to be ran on m different machines each. For

particular Job say Ji running particular operation Oj on machine Mj it takes processing time as pij

units.

There is a relationship between the job 's operations and machines. The job Ji's any operations

Oj can only begin on machine Mj when operations O1, O2, O3, ... , Oj-1 for the job Ji are completed

from machines M1, M2, M3, ... , Mj-1. Alternatively, no two operations for the same jobs are

processed at the same time and all preceding operations have to be completed before beginning

a new one. A machine can take only a job at one time. The job order may differ considering

the operations performed on the particular machine. As being flow shop, the operations order

hence machine order are followed by each job as M1 then M2 then M3 till Mm. Overall the aim

of this problem is to reduce the makespan such that the completion times for all the jobs on all

the machines is minimum. Hence the flow shop problem requires the effective job order for each

machine.Computing for n jobs and m machines flow shop problem has (n!)m different solutions in

order to get the optimal one. This is highly unlikely a feasible way to get optimal results. Therefore

there are other approaches as permutation flow shop where problem size reduces to n!.

Example of Flow Shop Problem

The example shows three jobs and three machines problem with a solution.

The makespan for the example is found to be 20.

7
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XXXXXXXXXXXJobs
Machines

M1 M2 M3

J1 2 1 2

J2 1 3 4

J3 5 1 2

Table 1.1: Flow Shop Problem Example Input

Figure 1.3: Gantt chart for the flow shop example

1.2.5 Permutation Flow Shop

The huge size of the solution of the flow shop problem is somewhat reduced using permutation flow

shop. Here instead of considering different job orders for each machine, just only one job order is

chosen for all the machines. The problem size hence turned to n!.

Example of Permutation Flow Shop Problem

The example shows three jobs and three machines problem with a solution for job order J1, J2 and

J3.

XXXXXXXXXXXJobs
Machines

M1 M2 M3

J1 3 1 2

J2 1 3 6

J3 5 3 2

Table 1.2: Permutation Flow Shop Problem Example Input

The makespan for the problem is found as 15.
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Figure 1.4: Gantt chart for the permutation flow shop example

1.2.6 Makespan Calculation

The job and machine along with their values are represented as matrix M. I have assumed machines

as rows and jobs are columns in matrix M.The total number of machines are as totalMachine and

the total number of jobs are as totalJob. The order or sequence of a job to be computed through

the machines is represented as an array O. The makespan calculated value is here represented as

Cmax which is an integer value.

The algorithm 1 below shows steps for calculation of makespan.

Algorithm 1 Cmax Calculation Algorithm

Input: (i) Job Machine Matrix M, (ii) Job Order O
Output: Cmax Value

1: Initialize variables
2: Allocate space for cumulative job completion calculation matrix J
3: for each machine r in M do
4: Allocate memory for the machine r and assign to matrix J
5: if r = 0 then
6: for each job c in M do
7: if c 6= 0 then
8: J[r][c] = J[r][c− 1] + M[r][O[c]]
9: else

10: J[r][c] = M[r][O[c]]

11: else
12: for each job c in M do
13: if c = 0 then
14: J[r][c] = J[r − 1][c] + M[r][O[c]]
15: else
16: J[r][c] = (J[r − 1][c] > J[r][c− 1])?J[r − 1][c] J[r][c− 1] + M[r][O[c]]

17: Cmax←− J[totalMachine− 1][totalJob− 1]
18: Release Memory from matrix J

9
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Chapter 2

Branch and Bound

2.1 History

Branch and Bound (B&B) is by far the most widely used tool for solving large scale NP-hard

combinatorial optimization problems. B&B is, however, an algorithm paradigm, which has to be

filled out for each specific problem type, and numerous choices for each of the components exist.

Even then, principles for the design of efficient B&B algorithms have emerged over the years.

The branch and bound methods in flow shop scheduling have been widely used for finding

optimal or near optimal solution methods. Ignall and Schrage (1965) [IS65], Lomnicki (1965) [Lom65],

McMahon and Burton (1967) [MB67], Ashour (1970) [Ash70], Gupta (1971) [Gup71], Lageweg et al.

(1978) [LLK78], and Bansal (1979) [Ban79] among others have developed different branch and bound

methods for various measures of performance like makespan, mean flow time, mean tardiness and

maximum tardiness. The difference and the efficiencies of a branch and bound algorithms are in

the choice of the lower bound (LB) and elimination rules. The strong bounds and elimination rules

eliminate relatively more nodes of the search tree which very often brings in more computation

requirements as well. If such needs are excessively large, it may become advantageous to search

through larger nodes using a weaker, but fast computable LB. However, the advantages of stronger

bounds and elimination rules are more substantial in large scale problems (Baker, 1975) [Bak75]. In

1973 Salvador [Sal73] suggested the permutation flow shop problem's solution through Branch and

bound. Kochhar and Morris (1987) [KM87] report work on the development of the heuristics. The

heuristics developed try to minimize the effect of setup times and blocking. Further work has been

reported by Brah and Hunsucker in the development of mathematical formulation, primarily useful

for small size problems [BH91].
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2.2 Overview

The concept of the branch and bound provides a strong basis for constructing the algorithms

to solve NP-hard discrete optimization problems. Starting with the whole solutions the B&B

algorithm searches for the best solution. However, the exponential number of solutions restricts

explicit enumeration. In order to make solution space feasible for getting best solution bounds play

a vital role. The bounds let search focus on only those space where there is a possibility of having

the best solution.

The search begins with a pool containing all the possible solutions which are marked to be

unexplored. The unexplored such subset is represented as nodes. For such node, B&B algorithm

processes a node at a time. The operations of B&B algorithm consists of selection of a node,

calculation of bound and branching. The order of these steps depends on the strategy of choosing

the next node for processing. If the bound value of the subproblem is considered for selection as next

subproblem, then branching is done after choosing the node. The branching means dividing the

current node space into two or more subspaces base on certain criteria. The branching is done till

the subspace has a single solution left which is compared to the current best solution and decision

is made to keep or discard based on the result of the comparison. Otherwise, the bounding function

for the subspace is calculated and compared to the current best solution. If the comparison results

show the subspace cannot have an optimal solution it is pruned or discarded else it is kept for

further iterations. Since the bounds are calculated first this is called eager strategy. Another way

is calculating the bound of the selected node and then branch on the node if necessary. The nodes

created are then stored together with the bound of the processed node. This strategy is called lazy

strategy. This is good for the depth-first approach in the search tree. Ultimately, the search space

is such reduced to have a solution and all live subspaces explored then the current best solution is

the required solution.

2.3 Simple B&B algorithm

The simplest B&B algorithm concept as an eager strategy is enumerated below:

1. Consider the whole unexplored solution which is a live node S in live.

2. Repeat until there is no node in live

(a) Get a node P from live
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(b) Generate branches from P

(c) for each branch of P

i. Get bound value X for each branch of P,

ii. If branch has only one solution then compare the current best value and update if

better.

iii. If branch has solutions pool then compare the lower bound X obtained to global if

better keep the branch in live else discard.

3. After completion the global results are required solution.

2.4 Figurative illustration of branch and bound

Let us understand the B&B concept through the figure. Figure 2.1 has images shown having prob-

lem representation in form of eclipse area and tree. The figure 2.1a shows the initial state of any

problem, on the left as eclipse whereas to the right is the root node. Based on certain properties

the area is divided into smaller regions which also can be illustrated as in the form of a tree as

shown in figure 2.1b. Meanwhile, there occurs bounding or pruning or fathoming which restricts

the need to explore a certain portion of the solutions. Thus all the solutions falling to the region

are not needed to be computed. In the figure 2.1c below, it is assumed S1 and S3 are pruned as

their LB is no better than the current best solution where S2 and S4 are further iterated to get

more deeper into the tree and hence towards the optimal. Let us assume, that S21, S22, S41 and

S42 each have a solution only. Each solution is compared to the global value. If the LB of of the

solution is better then new global value are set else it is discarded. Finally, the global value is the

required optimal for the problem.
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(a)

(b)

(c)

Figure 2.1: Illustrative of Branch and Bound
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2.5 B&B algorithm in Permutation Flow Shop Problem

The B&B requires the solutions to be searched for arranged in the form of a tree. The tree consists

of nodes. In my case the nodes consist of node level, lower bound for the node, partial job order

till that node, remaining job order, children count, children pointer, parent pointer, is fathomed

and other navigation necessary properties. The strategy followed in my case is eager. The initial

upper bound (UB) is obtained by iterating the random job order and computing makespan for

the job order to a fixed number of times with a minimum makespan preserved from the iteration.

We prune the node during traversal earlier by comparing UB to LB. This helps in the reduction

of many branches and hence nodes search. The traversal in a node is the hybrid best first search

(BeFS). The breadth-first search (BFS) is not suitable as it requires huge memory also depth-first

search (DFS) may take a longer time to get an optimal solution.

2.5.1 Lower bound for root

Initially, the LB computation based on each machine (LBm) is achieved by computing the complete

job processing on the machine. Here, for the base machine, it is assumed all the jobs are aggregated

and in addition the minimum of a job completion on all machines before the base machine is done

and similarly the minimum of a job completion on all machine after the base machine is added.

The lower bound of the root (LBroot) is assigned by selecting the maximum value obtained from

the lower bound computed on each machine base. The maximum value is selected because it is

only the possible value. The mathematical representation is as:

LBm = min
i(0...N−1)

( j=m−1∑
j=0

pij

)
+

i=N−1∑
i=0

pim + min
i(0...N−1)

( j=M−1∑
j=m+1

pij

)
(2.1)

LBroot = max
m(0...M−1)

(
LBm

)
(2.2)

In equation 2.1, m is the machine for which LB is to be calculated, i is any job, j is any machine,

N is total jobs, M is total machines and pij is processing time for any job i for any machine j. It

can be illustrated in the figure as below:
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Min. of summation of processing
time of a job from any jobs  for
machines < m 

Pre-
Summation

Add all processing time of
jobs for the machine m

Job Summation for m

Min. of summation of processing
time of a job from any jobs for
machines > m

Post-
Summation

+

+

LB for machine m at root

Figure 2.2: Lower bound for root calculation illustration figurative

2.5.2 Lower bound for node

Similar to LB for the root, lower bound for the node (LBm) also has three parts. The calculation

is similar based on the machine. First part is partial Cmax based on partial order by considering

only the machines up-to machine m. The second part is the summation of the processing time of

jobs which are not in the partial order. The third part is the same as in case of LB for root. Taking

only jobs that are not in partial order and machines that are after machine m in machine order, the

minimum sum of any single job is the third portion. Lower bound for the node (LBnode) is chosen

from LBm whichever is largest. The mathematical representation is:

LBm = Cmaxrm +
∑
i/∈R

pim + min
i/∈R

( j=M−1∑
j=m+1

pij

)
(2.3)

LBnode = max
m(0...M−1)

(
LBm

)
(2.4)

In equation 2.3, R is partial job order, r is last job of partial job order R and Cmaxrm is makespan

value for order R and machines (0,...,m). Figurative explanation is shown below.
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Partial Order Cmax till the job for
machine m

Partial Cmax

Remaining job processing
summation for machine m

Remaining Summation 

Min. of summation of processing
time of any job other than that in
Partial order from machines > m 

Post-
Summation

+

+

LB for machine m at node

Figure 2.3: Lower bound for node calculation illustration figurative

2.5.3 Node selection and branching

As stated earlier, the selection is the hybrid BeFS. BeFS is beneficial as it consumes less memory

than BFS and also reaches optimal faster than DFS. We have fused BeFS with DFS. The fusion

with DFS enabled in less consumption of memory. The node with LB is selected and branched as

the eager strategy. On each iteration, the search goes deeper into the tree until it reaches the leaf.

Then, it tries to complete search on all sister nodes before searching back on the parent level. As

search return back to parent it then release the memory occupied by the children. The branching

is always done to nodes which have better values than the current UB. The branching is not done

further than N-1 level because the child after the node is just one. Instead, the LB of its child is

calculated and placed earlier. The selection algorithm is as:

In algorithm 2, the first while loop makes sure there are children node to be selected. On line

13, the child fathomed helps in reduction of the tree earlier and adds in finding optimal earlier.

Similarly, memory release on line 16 adds more efficiency of the algorithm.

2.5.4 The B&B Algorithm

The B&B Algorithm is composed using equation 2.2, equation 2.4 and algorithm 2.

The root and the first children are created separately then algorithm 3 further is used. The

method GetPartialJoborders (A) generates the partial job order and remaining job order for the
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Algorithm 2 Hybrid BeFS algorithm for node selection

Input: Current Node C
Output: Next Node C'

1: Declare variable tempNext C'
2: if C is leaf node then
3: C.isfathomed = true
4: C ←− C.parent

5: while C.allchildfathomed = true do
6: C ←− C.parent till root.

7: while true do
8: for child c in C.children do
9: if c.isfathomed = false then

10: if c.lowerbound < GLOBAL.upperbound then
11: C' ←− c and break for loop
12: else
13: c.isfathomed = true

14: if C.allchildfathomed = true then
15: C.isfathomed = true
16: Release memory occupied by all the children
17: if C.parent = NULL then . all nodes traversal completed.
18: Return NULL
19: else
20: C ←− C.parent

21: for child c in C'.parent.children do
22: if c.lowerbound < C'.lowerbound and c.isfathomed = false then
23: C' ←− c
24: Return C'

child using the parent node. Based on the equation 2.4, GetLBforTheNode (A) method provide the

LB for intermediate nodes. As stated earlier, on line 17 we have calculated the LB earlier in the

parent node and reduced the further iteration shortening the tree. Also, the child is fathomed based

on the calculated LB as they produce no better result further through the children. Eventually,

reaching the last node of the tree, the result is saved if better else fathomed.

2.5.5 The B&B algorithm multi-threading

The single threaded approach takes more time. In order to improve the performance and reach the

optimal solutions fast, we have implemented simple threading. The root's children are enqueued

to a queue from where each thread picks a child and applies algorithm 3. The threading approach

is shown below in the flow chart:

17



www.manaraa.com

Algorithm 3 Branch and Bound algorithm

1: Declare variables myNode, child, children and childcount
2: while !nodeSearchComplete do
3: myNode ←− GetMimimumChildNode()
4: if myNode = NULL then
5: nodeSearchComplete ←− true
6: Break while loop

7: childcount ←− totalJobs − myNode.level
8: if childcount > 1 then . Create children for myNode
9: Allocate memory for myNode.children

10: for i ←− (0,...,childcount-1) do
11: child.level ←− myNode.level+1
12: child.parent ←− myNode
13: child.fathomed ←− false
14: child.childAllFathomed ←− false
15: child.childCount ←− 0
16: GetPartialJoborders(child.partialOrder,child.remainingOrder,myNode,i)
17: if childcount = 2 then
18: child.partialOrder[totalJobs-1] ←− child.remaingingOrder[0]
19: child.lowerbound ←− getCmax(child.partialOrder) . refer algorithm 1
20: else . refer equation 2.4
21: child.lowerbound ←−GetLBforTheNode(child.partialOrder,child.remainingOrder,child.level)

22: if child.lowerbound > GLOBAL.upperbound then
23: child.fathomed ←− true
24: child.childAllFathomed ←− true
25: myNode.children[i] ←− child

26: if childcount = 1 then
27: if child.lowerbound <= GLOBAL.upperbound then
28: saveResult(myNode.partialOrder,myNode.lowerbound)

29: child.fathomed ←− true
30: child.childAllFathomed ←− true
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Figure 2.4: Multi-Thread B&B Approach illustration
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Chapter 3

Genetic Algorithm

3.1 History

Earlier in the 1950s and the 1960s, independently several computer scientists studied evolutionary

systems. They intend to use this idea for solving engineering problems. This started with the

idea to evolve a population of candidate solutions to a given problem with the aid of operators

mimicking natural selection and genetic variation. On that run, genetic algorithms (GA) were

invented by John Holland and later Holland and his students and colleagues at the University

of Michigan developed it. Holland, inspired by Darwinian theory, thought to implement similar

in computer systems to design algorithms which follows adaptation phenomenon as in nature. A

theoretical framework for adaptation under the GA emerge as Holland's book Adaptation in Natural

and Artificial Systems was published in 1975. [Mit98]

3.2 Basic Concept

A new population is created going through a method described by GA. The method follows natural

selection in creating the new population as well the essence of genetics are imprinted through

operators crossover, mutation and inversion. The population consists of chromosomes basically

strings of 0's and 1's. Each gene is composed of an allele (0 or 1) and such genes join together to form

a chromosome. The new population is created as the selection operator chooses the chromosomes

that better fits. Sub-parts of two chromosomes are exchanged forming a crossover,mutation

occurs randomly altering the allele values of some genes in the chromosome and a contiguous

section's order is reversed through inversion all these operations makes a new array of genes in

the chromosome. These operators idea is that the newly formed chromosome may provide a better
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solution to the problem.

Simple GA Algorithm

Now, let us visualize a simple genetic algorithm concept in the digital world. It is explained as:

1. Initially create a population of size n having chromosomes of length l-bits randomly.

2. Calculate the fitness function f(x) over each chromosome x in the population.

3. Repeat the steps until n offspring have been created

(a) From the current population, select a pair of parent chromosomes. The chromosomes

are selected based on the fitness function's value higher or lower as preferred for type of

problem. The selection is with replacement meaning same parent can be selected more

than once.

(b) Now do crossover based on crossover probability pc. If no crossover occurred then off-

spring are parent themselves. The point for crossover in chromosome is determined

randomly. The crossover can be single point or multi-point. Ultimately, 2 offspring are

formed.

(c) With a mutation probability pm, mutate the offspring and put in new population.

4. Make the newly formed population as current population.

5. Based on required generations, go to step 2 and repeat.

Likewise, the biological generation, here a generation is marked as those process of an iteration.

Depending upon the need number of generations varies. The entire set of generations forms a run.

In overall operation, probabilities and randomness play a vital role hence at the end of the run we

get different results.

3.2.1 Simple GA Example

Let's take an illustrative example. Assume chromosome has a string of length l 7 bit, fitness

function f(x) be the count of 1's in the string, population size n be 4, crossover probability pc be

0.8 and mutation probability pm be 0.005.

Consider randomly generated initial population as
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Chromosome Name Chromosome String Fitness Value

P 0011110 4

Q 1101101 5

R 1010101 4

S 0001000 1

Table 3.1: A Simple GA Example - Initial Data

Simply using “roulette-wheel sampling” as an implementation of fitness-proportionate selection

in selection method we get parents. A circular roulette wheel is divided into arc areas based on

individual fitness from the current population and each chromosome are assigned accordingly. The

wheel is spun as to population size times to get that many parents here 4 times. Let from first 2

spins we get P and Q then on later we get Q and R. With pc = 0.8, the parents P and Q crossover

at the second bit to form T = 0001101 and U = 1111110. While Q and R didn't crossover so they

became offspring. Next step, the mutation occurred on offspring T on the second locus to form

T'= 0101101 and R on the fourth locus to form R'= 1011101. The final result then is:

Chromosome Name Chromosome String Fitness Value

T' 0101101 4

U 1111110 6

Q 1101101 5

R' 1011101 5

Table 3.2: A Simple GA Example - Result Data

Here we got a new better fit U (6), the average fitness also rose from 14/4 to 20/4. Eventually,

with further iterations we will get a string with all ones.

3.3 GA in Permutation Flow Shop Problem

There are few adjustments in simple GA are made in order to advocate the issue of permutation

flow shop problem. The chromosomes strings are job numbers exactly one time instead of 0's and

1's. We here represent chromosome string as job order. The crossover is two point and mutation

swaps any two jobs in the job order. The crossover probability pc is assumed to be 1. Based on the

fitness function or objective function value from the current population, top certain (say δ%) job

orders are taken directly to the new population. The remaining needed population are obtained

through the same steps as in simple GA algorithm assuming pc = 1.
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3.3.1 Initial Population

As the first step, the initial population is generated. A initial job order is set say J1, J2, ... , Jn

and with an advanced random number generator, we get any two position values in the job order to

swap and create new job order. This newly created job order is used as the base job order to swap

and generate another new job order. This process is repeated until the population size is reached.

Below are related algorithms : The next job order generator plays a vital role in providing

randomly distributed candidate solutions.

Algorithm 4 GA Next Job Order Generator Algorithm

Input: Job Order O
Output: Job Order O

1: Initialize the required parameters a, b
2: flag ←− true
3: while flag do
4: a = mynrand(0, totalJobs− 1) . refer appendix A
5: b = mynrand(0, totalJobs− 1)
6: if a 6= b then flag ←− false
7: swap(O, a, b) . refer appendix A
8: return O

In the algorithm 4, I have insured the random numbers generated are in the range and are

unique. This makes sure that resultant job order O after swapping is different from that of input.

The random population generation algorithm is as follows:

Algorithm 5 Initial GA Population Generation

Input: (i) Job Machine Matrix M, (ii) Job Order O
Output: (i) Population P (ii) Top δ% job orders T

1: Initialize the required parameters, i = 0, Cmax, P, T
2: while i < population size do
3: O ←− getNextJobOrder(O) . refer algorithm 4
4: Cmax←− jobSumulate(M,O) . refer algorithm 1
5: Bind Cmax with O
6: Insert O into Pi

7: for each element t in T do . To get ranked top δ% job orders.
8: if t.Cmax ≤ Cmax then
9: Replace in T then terminate loop.

10: Return P, T

The algorithm 5 uses algorithm 1 and algorithm 4 to yield the initial random population P.The

process of ranking the whole population is expensive in terms of performance to get the top δ%

job orders. We here avoid a load of ranking by comparing and inserting the better job orders in
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a fixed sized array T. This array T is transferred to new population directly. The remaining job

orders for the new population are obtained through selection, crossover, and mutation.

3.3.2 Selection

The selection is done from the current population P with replacement. The job orders along with

their Cmax values are used to create a range in which higher Cmax occupies more range. The

range begins from 0 to sum of Cmax from the current population P. I have designed an algorithm

which helps in getting a better job order out of the current population for crossover. The algorithm

is as:

Algorithm 6 Higher Probable Job Order Index Finder Algorithm

Input: (i) Cumulative Cmax Array Pc (ii) Population Size S
Output: Higher Probable Job Order Index for Current Population Array P

1: Initialize the required parameters, Cumulative Cmax CT ←− Pc[S]
2: index←− S
3: random←− mynrand(1,CT) . refer appendix A
4: for i = S− 1 till i = 0 do
5: if random ≤ Pc[i] then
6: index←− index− 1

7: Return index

The Cumulative Cmax Array Pc is created at the time of population generation so as to

accommodate the selection process later. The index obtained from this algorithm 6 is then used

as index in the current population P to get a parent for crossover. In addition, to make sure the

two job order obtained are different, we have added following snippet before each index is fed for

crossover.

...

a = higherProbJob(Pc,S) . refer algorithm 6

b = higherProbJob(Pc,S)

while a = b do

b = higherProbJob(Pc,S)

...

3.3.3 Crossover

The two unique job orders (O1 and O2) are obtained through selection operation. The crossover

we are implementing here is two point. Randomly the points are obtained such that first point
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is always less than half of the job order and second is either equal to half or greater. This point

selection can be of other ways too. The offspring generation has mainly three steps, copying the

job order from the beginning until the start point from a parent (say O1), copying the job order

from the start point to the end point inclusive from another parent (say O2) and finally copying

the remaining job order from parent again(say O1). While copying from the start point onward it

is made sure that the job number has not occurred previously in the sequence. If, for a position

in the new job order, the job number matches then the next job number is taken and if it reaches

the end of the job order in parent then it again scans from the beginning to find unmatched job

number and then copy it to the new job order. This occurs twice to create two offspring. Below is

the algorithm illustrating it.

Algorithm 7 Crossover Algorithm

Input: (i) Job Order O1 (ii) Job Order O2

Output: (i) New Job Order O1' (ii) New Job Order O2'

1: Initialize the required parameters, start point sp, end point ep
2: sp←− mynrand(1, (totalJob/2)− 1) . refer appendix A
3: ep←− mynrand(totalJob/2, totalJob− 1)
4: while i < sp do
5: O1'[i]←− O1[i]
6: O2'[i]←− O2[i]

7: for i = sp till i = ep do . for O1'
8: flag ←− true
9: while flag do

10: if (O1[i] 6= O2[i]) and (O2[i] does not exists in any O1'[i]) then
11: O1'[i]←− O2[i]
12: flag ←− false
13: else
14: Select next job order from O2

15: Repeat similarly from step 7 to 14 for O2'
16: Return O1',O2'

3.3.4 Mutation

The obtained new job orders O' after crossover are subjected to mutation. The mutation occurs

based on the mutation probability pm. Usually, pm is very low.
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Algorithm 8 Mutation Algorithm

Input: Job Order O'
Output: Mutated Job Order O'

1: Initialize the required parameters a, b
2: flag ←− true
3: while flag do
4: a = mynrand(0, totalJobs− 1) . refer appendix A
5: b = mynrand(0, totalJobs− 1)
6: if a 6= b then flag ←− false
7: swap(O', a, b) . refer appendix A
8: return O'

3.4 Population Generation

The new population for each generation are generated using the operators selection, crossover and

mutation. The steps for new population generation uses algorithm 6, algorithm 7 and algorithm

8. There is chances of memory issues so proper cleanup are required after each generation. The

algorithm for new population generation is illustrated as in algorithm 9 below:

3.5 GA multi-threading

Multi-threads are used in mainly two places in order to gain in performance. The initial population

generation is done by multiple threads. Later the new population pool generation is also multi-

threaded. The threading approach is illustrated in the diagram below:
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Algorithm 9 New GA Population Generation

Input: (i) Job Machine Matrix M (ii) Population P (iii) Cumulative Cmax Array Pc

(iv) Population Size S (v) Top δ% job orders T
Output: (i) New Population P' (ii) Top δ% job orders T (iii) New Cumulative Cmax Array
P'c

1: Initialize the required parameters, i = 0, P'
2: i ←− (S ∗ δ%)− 1

3: P' insertall←−−−−− T . insert top job orders from current population to new.
4: Update P'c using T
5: while i < S do
6: a = higherProbJob(Pc,S) . refer algorithm 6
7: b = higherProbJob(Pc,S)
8: while a = b do
9: b = higherProbJob(Pc,S)

10: O1 ←− P[a]
11: O2 ←− P[b]
12: O'1,O'2 ←− crossover(O1,O2) . refer algorithm 7
13: Om

1 ←− mutate(O'1) . refer algorithm 8
14: Om

2 ←− mutate(O'2)
15: Insert Om

1 and Om
2 into P' and update P'c

16: for each element t in T do . To get ranked top δ% job orders.
17: if t.Cmax ≤ Om

1.Cmax then
18: Replace in T with Om

1 then terminate loop.

19: for each element t in T do
20: if t.Cmax ≤ Om

2.Cmax then
21: Replace in T with Om

2 then terminate loop.

22: Release memory of P,P'c

23: Return P', P'c,T

27



www.manaraa.com

Yes

Population 
reached?

Thread 1 

Population 
reached? 

Thread 2 

Yes 

Population 
reached? 

Thread n 

End Thread

No No NoYes 

Start

Load Problem  
Matrix

Generation 
Reached?

Start New population
Generation

Yes

New 
Population 
reached?

Thread 1 

New 
Population 
reached? 

Thread 2 

Yes 

New 
Population 
reached? 

Thread n 

End Thread

No No NoYes 

New Population
Generation

New Population
Generation

New Population
Generation

Initial Population
Generation

Initial Population
Generation

Initial Population
Generation

Display  
Saved Results

End

Figure 3.1: Multi-Thread GA Approach illustration
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Chapter 4

Results

The algorithms were converted to program and results were obtained. The results were computed as

a single thread as well as multi-thread. For the case of multiple threads, we have used eight threads.

We have used C programming of version C99. The machine we have used is java.cs.unlv.edu and

visual studio 2017 IDE is used. The problem files were obtained from New hard benchmark for flow

shop scheduling problems minimising makespan [Eva15]. The machine configuration we have used is:
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OS

GNU/Linux

Kernel Version

#1 SMP Fri Feb 1 14:54:57 UTC 2019

Kernel Release

3.10.0-957.5.1.el7.x86_64

CPU

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

CPU(s): 8

Vendor ID: GenuineIntel

CPU family: 6

Model: 58

Model name: Intel(R) Xeon(R) CPU E3-1240 V2 @ 3.40GHz

CPU MHz: 1643.969

CPU max MHz: 3800.0000

CPU min MHz: 1600.0000

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 8192K

MEMORY

Memory block size: 128M

Total online memory: 32G

Total offline memory: 0B

4.1 Exhaustive Search Results

The results were generated only from problems of jobs 10 and machines 5, 10, 15 and 20 which

are in small set problems from VFR benchmark problems. Each problem has 10 different sets.
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Figure 4.1: Machine Configuration
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4.1 Exhaustive Search Results

The results were generated only from problems of jobs 10 and machines 5, 10, 15 and 20 which

are in small set problems from VFR benchmark problems. Each problem has 10 different sets.

The number of solutions to calculate in order to get all the optimal is given by the factorial of the

number of jobs (for 10 jobs, 10! = 3628800 solutions). In addition, we have done the calculation

for all the optimal for the problem. The speedup is calculated by dividing the execution time of a

single thread by the execution time of multi-thread. The comparative results for single thread and

multi-thread along with speedup is shown below:

S.N. Problem Count Time (Th 1) Time (Th 8) Speedup

1 10 5 1 2228 1341.94202 932.01001 1.43984

2 10 5 2 30 1310.16406 922.09302 1.42086

3 10 5 3 36 1333.31397 930.43103 1.43301

4 10 5 4 26 1327.45300 921.53998 1.44047

5 10 5 5 12 1333.36597 939.31598 1.41951

6 10 5 6 323 1312.76599 923.65302 1.42128

7 10 5 7 66 1328.79004 930.16998 1.42855

8 10 5 8 12 1329.18799 922.89801 1.44023

9 10 5 9 18 1331.31006 923.76599 1.44118

10 10 5 10 48 1325.68201 929.86597 1.42567

11 10 10 1 2 2445.39307 1576.40100 1.55125

12 10 10 2 548 2458.28809 1558.51807 1.57732

13 10 10 3 24 2427.65991 1564.85107 1.55137

14 10 10 4 4 2455.43604 1560.08594 1.57391

15 10 10 5 5 2421.36206 1575.70496 1.53668

16 10 10 6 317 2426.29590 1582.04297 1.53365

17 10 10 7 1 2432.15088 1566.06494 1.55303

18 10 10 8 48 2437.12695 1556.12598 1.56615

19 10 10 9 6 2451.75708 1572.51502 1.55913

20 10 10 10 15 2447.73193 1574.06604 1.55504
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Table 4.1 continued from previous page

S.N. Problem Count Time (Th 1) Time (Th 8) Speedup

21 10 15 1 1 3527.47998 2177.64111 1.61986

22 10 15 2 1 3527.82007 2190.71191 1.61035

23 10 15 3 1 3509.75708 2196.44092 1.59793

24 10 15 4 5 3520.12891 2171.95313 1.62072

25 10 15 5 2 3503.35400 2196.25610 1.59515

26 10 15 6 1 3498.88794 2195.74512 1.59349

27 10 15 7 56 3539.15405 2186.43799 1.61868

28 10 15 8 9 3514.88208 2176.32690 1.61505

29 10 15 9 15 3531.58789 2202.57910 1.60339

30 10 15 10 1 3529.57495 2199.30005 1.60486

31 10 20 1 2 4639.98682 2852.52002 1.62663

32 10 20 2 1 4600.63721 2872.04102 1.60187

33 10 20 3 1 4594.14600 2889.40210 1.59000

34 10 20 4 4 4628.41992 2859.86401 1.61841

35 10 20 5 2 4594.84180 2841.83594 1.61686

36 10 20 6 218 4621.86523 2874.50195 1.60788

37 10 20 7 1 4625.17676 2847.19702 1.62447

38 10 20 8 2 4645.15820 2872.38989 1.61718

39 10 20 9 3 4601.27197 2869.10010 1.60373

40 10 20 10 2 4621.06104 2865.68604 1.61255

Table 4.1: Exhaustive search result single and multi threads with optimal results count.

The table 4.1 is summarized in terms of the number of machines and we get the following result.
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Figure 4.2: Machine based Threaded and Non-Threaded comparison with speedup

The threading seems to give an average speedup of 1.5. It is expected to increase the speed

of execution by 8 times as we use eight threads but only 1.5 is obtained. This happened because

of Amdahl's law [Gen67], which states, there is only a certain percentage (i.e. less than 100%) of

execution time which can be subjected to the speedup. But as we go on increasing more jobs

this approach wouldn't be enough to calculate optimal as the number of solution size increases

exponentially.

4.2 Branch and Bound Algorithm Results

The next implementation Branch and Bound algorithm provided better results. The results for the

same problem as of exhaustive search was taken. The comparative analysis of the algorithm based

on execution time and nodes visited with and without threading along with speedup is tabulated

below:
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S.N.
Problem

Size
BB BB Threaded

BB

/BB Th

Ex Th

/BB Th

Time
Node

Visited
Time

Node

Visited

1 10 5 1 385.05801 1289946 250.62300 1124397 1.53640 3.71877

2 10 5 2 44.01800 172967 25.69200 144731 1.71330 35.89028

3 10 5 3 62.76900 250422 37.32700 217280 1.68160 24.92649

4 10 5 4 58.16800 234954 40.32100 214046 1.44262 22.85509

5 10 5 5 4.04000 12520 3.64300 16025 1.10898 257.84133

6 10 5 6 12.77600 47784 13.14300 51025 0.97208 70.27718

7 10 5 7 35.44700 140861 24.56200 132755 1.44316 37.87029

8 10 5 8 60.72302 244797 32.65100 174194 1.85976 28.26553

9 10 5 9 1.89900 4279 1.57200 4507 1.20802 587.63740

10 10 5 10 89.51600 361014 46.94700 280575 1.90675 19.80672

11 10 10 1 57.54300 151556 29.01200 143617 1.98342 54.33617

12 10 10 2 271.76502 790482 142.21503 731582 1.91094 10.95888

13 10 10 3 151.82001 245277 43.97800 229746 3.45218 35.58259

14 10 10 4 95.69500 224473 40.99800 200530 2.33414 38.05273

15 10 10 5 24.67600 57958 11.19000 55244 2.20518 140.81367

16 10 10 6 158.48300 453318 80.11900 422942 1.97810 19.74616

17 10 10 7 276.18103 803231 118.64200 632401 2.32785 13.19992

18 10 10 8 95.78300 130833 27.13900 124448 3.52935 57.33911

19 10 10 9 25.94100 41289 9.45500 38058 2.74363 166.31571

20 10 10 10 157.42000 384958 80.25500 407163 1.96150 19.61331

21 10 15 1 81.05500 133817 35.69400 130673 2.27083 61.00860

22 10 15 2 104.81200 189062 40.79900 159475 2.56898 53.69524

23 10 15 3 234.21800 435419 65.86400 285716 3.55609 33.34813

24 10 15 4 364.97803 725653 158.66400 671070 2.30032 13.68901

25 10 15 5 52.03400 70898 22.34500 78818 2.32866 98.28849

26 10 15 6 60.20400 97532 23.55500 89527 2.55589 93.21779

27 10 15 7 242.08200 475161 122.84802 458486 1.97058 17.79791
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Table 4.2 continued from previous page

S.N.
Problem

Size
BB BB Threaded

BB

/BB Th

Ex Th

/BB Th

Time
Node

Visited
Time

Node

Visited

28 10 15 8 164.58000 310466 57.57000 230850 2.85878 37.80314

29 10 15 9 162.23900 293375 63.21900 276696 2.56630 34.84046

30 10 15 10 71.40997 112719 31.05200 113137 2.29969 70.82636

31 10 20 1 249.46500 295685 80.60500 267074 3.09491 35.38887

32 10 20 2 166.57800 197686 61.16300 181222 2.72351 46.95717

33 10 20 3 418.05899 594717 132.83200 475108 3.14728 21.75230

34 10 20 4 79.84800 82861 35.50800 92656 2.24873 80.54140

35 10 20 5 241.64301 299718 97.46400 271912 2.47931 29.15780

36 10 20 6 144.31500 171803 58.46000 173378 2.46861 49.17041

37 10 20 7 100.94400 109576 34.58300 93880 2.91889 82.32938

38 10 20 8 82.06900 84133 35.27500 84345 2.32655 81.42848

39 10 20 9 98.76000 109283 49.70100 144366 1.98708 57.72721

40 10 20 10 161.92900 186145 76.32200 219059 2.12166 37.54731

Table 4.2: Execution time and node visited results for single and multi-threaded comparison with

speedup

In table 4.2, it is clearly observed from the results that we gain performance when multi-

threading is used. The execution time of single and multi-threading are summarized in terms

of average time, maximum time, minimum time and median time in order to understand the

algorithm's performance from different prospect.

We found out the execution time was decreased for multi-threading which can be easily seen

in figure 4.3. The data obtained is summarized and we get speedup summary as the maximum

3.556, minimum 0.972, average 2.252 and median 2.285. Since the median is higher than average

we can say the speedup is more skewed towards the left which is low. Yet, we can see there is

good speedup factor. Similarly, we have calculated the execution time of multi-threaded exhaustive

search to multi-threaded branch and bound on table 4.2. The summarized speedup results are way
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Figure 4.3: Execution Time comparison for Single and Multi-Threaded

better with average 67.039, maximum 587.637, minimum 3.718 and median 37.836. The median is

lower than average which means there are higher speedup values in comparison to lower ones.

0

200000

400000

600000

800000

1000000

1200000

1400000

Average Max Min Median

C
o

u
n

t

Nodes Visited

BB BB Th

Figure 4.4: Nodes Visited comparison for Single and Multi-Threaded

The next is, we put the nodes visited by the branch and bound method based on single and multi-
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thread are summarized in terms of their average node visited, maximum nodes visited, minimum

nodes visited and median of nodes visited. It is clearly visible from figure 4.4, in every aspect the

multi-threaded approach outperforms the single thread. In order to get optimal, for the case of 10

jobs, the exhaustive search has to calculate 3628800 solutions which we can see has been drastically

reduced in case of branch and bound. The number of nodes visited is summarized as maximum

1124397, minimum 4507, average 246068 and median 177708. This shows that we were able to

reduce a lot of computation (only 30% get optimal even for maximum nodes visited).

The result is also compared to the result from A branch-and-bound method to minimize the

makespan in a permutation flow shop with blocking and setup times [TN17]. Only the relevant

problems were taken and compared:

Problem Size BB(TN) BB(here) Speedup
Time Nodes Time Nodes

10 5 54930 199743.05 47.64 235953.50 1153.02

10 10 129950 270314.60 58.30 298573.10 2228.98

Table 4.3: BB results comparison with Takano and Nagano [TN17]

The table 4.3 shows our method visits more node in comparison to that of Takano and Nagano's

results. However, there is a significant gain in terms of the execution time. In addition, the speedup

is even better for a larger problem.

4.3 Genetic Algorithm Results

The genetic algorithm was used to calculate near-optimal solutions for all the small size problems

from VFR benchmark problems with varied population size and generations. The results are

generated varying the generation and the population size. Further, the set of 10 problems of each

problem size are averaged in terms of the approximation ratio (AR) and the execution time. The

AR here denotes how close to optimal we were able to get the makespan. In addition, the exact

optimal obtained for that problem size is also noted.

We have results summarized for twenty-four different problem size into three different tables.

Each table has records for two different values of generation and population. In the first table, we

took 50 population size and generation of 50 and 100. Similarly on the second table population is

increased to 100 and generations to 100 and 1000. The third table has records for generation 2000

and population 100 as well for generations 1000 and population 1000.

37



www.manaraa.com

S.N. Problem

Size

Generation 50 Population 50 Generation 100 Population 50

Ave AR Ave Time Count Ave AR Ave Time Count

1 10 05 1.00539 41.87093 4 1.00162 79.26700 7

2 10 10 1.00483 33.35743 4 1.00643 78.45760 3

3 10 15 1.00950 33.33077 0 1.00248 77.08480 2

4 10 20 1.00920 33.92823 1 1.00410 78.52070 2

5 20 05 1.04371 39.08390 0 1.03076 79.60833 0

6 20 10 1.07757 38.15840 0 1.06539 73.98053 0

7 20 15 1.07059 38.61563 0 1.06261 70.66593 0

8 20 20 1.06446 37.74750 0 1.05550 68.19177 0

9 30 05 1.02147 39.68787 0 1.01935 74.48783 0

10 30 10 1.10117 38.28437 0 1.09125 71.27473 0

11 30 15 1.11074 36.78903 0 1.09393 68.17823 0

12 30 20 1.09615 35.49190 0 1.08396 65.73140 0

13 40 05 1.02954 40.26257 0 1.02016 72.73687 1

14 40 10 1.09974 37.50417 0 1.08995 73.94120 0

15 40 15 1.11996 35.35737 0 1.10796 70.73783 0

16 40 20 1.12134 36.75620 0 1.10704 69.20780 0

17 50 05 1.02196 35.74777 0 1.01411 69.48460 0

18 50 10 1.09544 33.94417 0 1.08130 66.22093 0

19 50 15 1.13573 33.30110 0 1.11449 64.89777 0

20 50 20 1.13615 33.40837 0 1.12478 64.60513 0

21 60 05 1.03200 29.98170 0 1.01900 57.68743 0

22 60 10 1.10462 29.02387 0 1.08971 56.20353 0

23 60 15 1.13586 28.81720 0 1.12293 56.09087 0

24 60 20 1.14475 28.95177 0 1.13094 56.20207 0

Table 4.4: Genetic algorithm summary results 1
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S.N. Problem

Size

Generation 100 Population 100 Generation 1000 Population 100

Ave AR Ave Time Count Ave AR Ave Time Count

1 10 05 1.00184 70.42243 8 1.00014 637.15124 9

2 10 10 1.00304 67.30763 5 1.00055 563.00970 8

3 10 15 1.00451 66.25617 3 1.00145 554.71808 7

4 10 20 1.00441 67.27426 3 1.00000 549.31816 10

5 20 05 1.03209 68.53643 0 1.01390 558.81753 0

6 20 10 1.05253 63.50790 0 1.03567 548.49307 0

7 20 15 1.05213 55.56420 0 1.02947 540.93880 0

8 20 20 1.04463 55.47463 0 1.02646 537.31767 0

9 30 05 1.01604 56.46510 1 1.00770 551.06350 3

10 30 10 1.07758 55.59820 0 1.05031 541.44977 0

11 30 15 1.09166 55.69220 0 1.05935 1235.39293 0

12 30 20 1.07884 56.01157 0 1.04972 2297.76910 0

13 40 05 1.01835 56.01090 1 1.00590 998.44786 3

14 40 10 1.08696 55.90403 0 1.05410 630.12128 0

15 40 15 1.10128 55.95207 0 1.06491 544.53797 0

16 40 20 1.10191 56.79460 0 1.07217 552.93111 0

17 50 05 1.01267 56.25187 1 1.00408 630.04404 3

18 50 10 1.07916 56.33490 0 1.04923 547.22150 0

19 50 15 1.11664 56.96643 0 1.07751 556.66084 0

20 50 20 1.11920 58.15757 0 1.08277 565.84767 0

21 60 05 1.02101 56.49667 0 1.00436 1189.01226 2

22 60 10 1.08601 57.13873 0 1.05288 2486.81500 0

23 60 15 1.11879 58.59247 0 1.07877 635.25043 0

24 60 20 1.12831 59.89063 0 1.08899 580.39360 0

Table 4.5: Genetic algorithm summary results 2
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S.N. Problem

Size

Generation 2000 Population 100 Generation 1000 Population 1000

Ave AR Ave Time Count Ave AR Ave Time Count

1 10 05 1 1231.2886 10 1 1912.20807 10

2 10 10 1.00085 1127.04913 8 1 1937.68647 10

3 10 15 1.00044 1109.87139 8 1 1944.28724 10

4 10 20 1 1099.07697 10 1 1933.09803 10

5 20 05 1.00956 1188.34078 0 1.00356 1902.75586 5

6 20 10 1.03018 1097.1213 0 1.01747 1913.47974 0

7 20 15 1.0255 1082.8509 0 1.01744 1913.43444 0

8 20 20 1.01966 1075.11493 0 1.01378 2023.56199 0

9 30 05 1.00662 1166.30976 3 1.00544 1945.76337 5

10 30 10 1.04901 1083.87214 0 1.0433 1968.38396 0

11 30 15 1.04903 1083.37943 0 1.04395 2069.26316 0

12 30 20 1.04918 2744.781 0 1.03957 2277.33846 0

13 40 05 1.00336 1148.62089 5 1.00301 1998.68504 4

14 40 10 1.04807 1091.90557 0 1.04423 2140.90675 0

15 40 15 1.06168 1238.30443 0 1.05737 2420.30684 0

16 40 20 1.06874 4779.18795 0 1.06045 2785.26738 0

17 50 05 1.00187 1171.33963 4 1.00287 2271.09966 3

18 50 10 1.04451 1094.29702 0 1.04193 2452.44397 0

19 50 15 1.07411 2802.18254 0 1.06927 4018.52802 0

20 50 20 1.07756 4038.72514 0 1.07054 3988.47355 0

21 60 05 1.00315 1172.21559 3 1.00462 2716.75994 2

22 60 10 1.05169 1106.39646 0 1.04525 6880.58966 0

23 60 15 1.06941 5149.50628 0 1.06913 3383.70755 0

24 60 20 1.08586 1252.06204 0 1.0759 6904.88014 0

Table 4.6: Genetic algorithm summary results 3

We accumulated the results of table 4.4, table 4.5 and table 4.6 based on number of jobs and

number of machines. The results are compared in terms of the execution time, the AR achieved
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and the number of exact optimal reached. The accuracy calculation formula is:

AR =
GA V alue

Optimal

The AR = 1 means the algorithm has generated the optimal perfectly. Any value higher than 1

means the result from GA is deviated from the optimal.

Analysis per number of jobs

The figure 4.5 shows the time comparison. It is seen with an increase in the number of jobs the

execution time increase. The execution time increase for change in configuration values which is

also increasing.
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Figure 4.5: Averaged execution time comparison summarized over number of jobs

For an increase in the number of jobs the AR indicate more deviation from the optimal as

seen in the figure 4.6. But with a change in configuration GA provides better results and converge

towards the optimal.

The third comparison in the figure 4.7 shows that more optimal is achieved as we increase the

value of generation and population size. For a lower number of job we are able to get more optimal.
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Figure 4.6: Averaged AR comparison summarized over number of jobs
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Figure 4.7: Exact optimal count comparison summarized over number of jobs

Analysis per number of machines

Based on the machine and the configuration values the GA tend to have an increase in the execution

time. The respective execution time plot is shown in figure 4.8:
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Figure 4.8: Averaged execution time comparison summarized over number of machines

The AR comparison is similar to the AR comparison based on the number of jobs as shown

earlier. The result tends to be nearer to the optimal as the configuration is changed to higher

values. Also, AR is better for problems with less number of machines. It is shown in the figure 4.9:
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Figure 4.9: Averaged AR comparison summarized over number of machines
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The trend is similar to that of job-based comparison for the number of optimal counts. More

optimal is achieved as we change the configuration to higher values and count are higher for less

number of machines. It is shown in the figure 4.10:
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Figure 4.10: Exact optimal count comparison summarized over number of machines

4.4 Problems Faced

There are various technical problems that occurred during the thesis. The problem given by VFR

was in a different format to read which was adjusted while reading from the file and creating the

matrix. The multi-threading implementation initially raised the issue of race conditions as the

original algorithm's approach didn't fit for the concurrent approach. With the use of multi-thread,

the issue of memory leak arose which was handled by proper allocation and release of memory. The

default library in C wasn't good enough for generating higher value random number. A different

random number generator was used for the case. There was an issue of lack of memory for some

case so many other problems weren't computed. For results comparison, there were no other results

found in case of the VFR problems which are different from that of Taillard's.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We here have shown the improvement in algorithms for performance as well compared the obtained

results. We achieved a maximum speedup of 1.6 in case of exhaustive search which can be further

increased with an increase in the number of threads. We also have computed for all the optimal

for the problem which can be reflected as a basis for near-optimal methods.

The next part, Branch and Bound performs way better in comparison to that of exhaustive

search. A minimum speedup of 3 to 587 is obtained for the same problem set in compared to

exhaustive search. Moreover, in terms of execution time, our branch and bound algorithm had

speedup over 1153.02 compared to that of the branch and bound algorithm of Takano and Nagano.

This suggests our approach of the branch and bound served well.

In the case of the genetic algorithm, we scale up our problem solving capacity than that of

the other two approaches. Comparatively, we have observed the variation of results based on the

configuration of generations and population size. It can be clearly seen that the higher the number

of generation and population size the better are the results. But, there is the cost of higher execution

time. Also, the population size seems to have a larger impact on the result than the generations.

Overall, we have computed a benchmark for the VFR permutation flow shop problems. These

problems seem to have higher complexity with an increase in the number of jobs as well as an

increase in the number of machines.
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5.2 Future Work

The exhaustive search approach can be made as distributed with multi-threading approach which

could give results for a larger problem. The branch and bound algorithm can be extended as

distributed with multi-threading approach. In addition, the proper memory management may

increase the algorithm's capacity of solving a larger problem. In genetic algorithm, a varying

configuration can help in determining the best values of generations and population size based

on the problem size. A proper approach to determine mutation percentage and best carry over

chromosome percentage may yield better results. Also, properly random initial random population

generation method may provide better result.
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Appendix A

Selected Source Code

Random Generator

1 /***Provides higher range random number ***/

2 unsigned long long llrand() {

3 unsigned long long r = 0;

4 for (int i = 0; i < 5; ++i) {

5 r = (r << 15) | (rand() & 0x7FFF);

6 }

7 return r & 0xFFFFFFFFFFFFFFFFULL;

8 }

9 /***Provides a random number between specified range***/

10 unsigned int mynrand(unsigned int lower, unsigned int upper)

11 {

12 return (lower + llrand() % (upper - lower + 1));

13 }

Swap

1 /***Swaps values at specified places***/

2 void swap(unsigned int *a, unsigned int i, unsigned int j)

3 {

4 unsigned int temp = a[i];

5 a[i] = a[j];

6 a[j] = temp;

7 }

Lower Bound for Root

1 unsigned int GetInitialLBforRoot() {

2 unsigned int a, c, LB = 0, tempLB = 0;
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3 unsigned int* sum1 = (unsigned int *)malloc(totalJobs * sizeof(unsigned int));

4 unsigned int* sum3 = (unsigned int *)malloc(totalJobs * sizeof(unsigned int));

5 unsigned int sum2 = 0;

6 unsigned int minFirstJob = 0;

7 unsigned int minLastJob = 0;

8 for (unsigned int m = 0;m < totalMachines;m++) {

9 tempLB = 0;

10 sum2 = 0;

11 minFirstJob = 0;

12 minLastJob = 0;

13 //find min sum for first jobs before the machine m.

14 for (c = 0;c < totalJobs;c++) {

15 sum1[c] = 0;

16 for (a = 0;a < m;a++) {

17 sum1[c] += originalMatrix[a][c];

18 }

19 //sum all jobs in the machine m

20 sum2 += originalMatrix[m][c];

21 //find sum of last jobs on remaining machine after machine m

22 sum3[c] = 0;

23 for (a = m + 1;a < totalMachines;a++) {

24 sum3[c] += originalMatrix[a][c];

25 }

26 if (c != 0) {

27 if (sum1[minFirstJob] > sum1[c]) {

28 minFirstJob = c;

29 }

30 if (sum3[minLastJob] > sum3[c]) {

31 minLastJob = c;

32 }

33 }

34 }

35 tempLB = sum1[minFirstJob] + sum2 + sum3[minLastJob];

36 if (tempLB > LB) {

37 LB = tempLB;

38 }

39 }

40 free(sum1);

41 free(sum3);

42 return LB;

43 }

Lower Bound for Node

1 unsigned int GetLBforTheNode(unsigned int*jOrder, unsigned int*rOrder,
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2 unsigned int level) {

3 register unsigned int m, c, a;

4 unsigned int tempLB, tempClr, sum2, minLastJobs, LB = 0;

5 unsigned int* sum3 = malloc(totalJobs * sizeof(unsigned int));

6 for (m = 0;m < totalMachines;m++) {

7 tempLB = sum2 = minLastJobs = 0;

8 tempClr = GetPartialCmax(jOrder, level, m);

9 for (c = 0;c < totalJobs - level;c++) {

10 sum2 += originalMatrix[m][rOrder[c]];

11 sum3[c] = 0;

12 for (a = m + 1;a < totalMachines;a++) {

13 sum3[c] += originalMatrix[a][rOrder[c]];

14 }

15 if (c != 0) {

16 if (sum3[minLastJobs] > sum3[c]) {

17 minLastJobs = c;

18 }

19 }

20 }

21 tempLB = tempClr + sum2 + sum3[minLastJobs];

22 if (tempLB > LB) {

23 LB = tempLB;

24 }

25 }

26 free(sum3);

27 return LB;

28 }

Generate Partial Order

1 void GetPartialJoborders(unsigned int *partialJobOrder, unsigned int *remJobOrder,

2 unsigned int currLevel, unsigned int remJobNo) {

3 register unsigned int r = 0, c = 0;

4 //transferred specified job from remaining order to fixed order

5 partialJobOrder[currLevel] = remJobOrder[remJobNo];

6 //remove the job no from remJobOrder

7 for (c;c < totalJobs - currLevel;c++) {

8 if (c != remJobNo) {

9 remJobOrder[r] = remJobOrder[c];

10 r++;

11 }

12 }
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